APL-UW Home

Jobs
About
Campus Map
Contact
Privacy
Intranet

Eric D'Asaro

Senior Principal Oceanographer

Professor, Oceanography

Email

dasaro@apl.washington.edu

Phone

206-685-2982

Research Interests

Physical oceanography, internal waves, air-sea interaction, upper ocean dynamics, Arctic oceanography, ocean instrumentation

Biosketch

Dr. D'Asaro's research spans a wide number of environments from upper ocean mixed layers to nearshore coastal fronts to fjords to deep convection. It retains studies of turbulence and internal waves, but has increasingly moved toward understanding the role of these ocean mixing processes in controlling biochemical processes in the ocean, especially gas exchange and biological productivity. By measuring big signals, like hurricanes or major blooms, it is easier to unravel the underlying processes because the signal to noise is high.

For the past 20 years, D'Asaro has focused on exploiting the unique capabilities of "Lagrangian Floats", a class of instruments that try to accurately follow the three dimensional motion of water parcels particularly in regions of strong mixing. This turns out to be a novel but effective way to measure turbulence in regions of strong mixing.

Lagrangian techniques have not been used very much in measuring mixing and turbulence. Accordingly one of the more exciting aspects of this work is learning how to use Lagrangian floats in the ocean. This understanding draws both upon basic ideas in fluid mechanics and upon understanding of mixing in the ocean. It strongly influences float design, use, and the oceanographic problems studied. The work thus spans a wide range of topics, from fluid mechanics to oceanography to engineering. That makes it particularly fun and interesting.

Chemical species in the ocean and many microbial plants and animals drift with the ocean currents. Floats mimic this behavior, making them excellent platforms for studying aspects of ocean chemistry and biology. There is an ongoing revolution in these fields as electronic sensors become capable of making measurements formerly possible only in the laboratory. Floats equipped with such sensors are potentially very powerful tools. Dr. D'Asaro works to realize this potential, which is especially challenging and interesting as he collaborates with ocean biologists and chemists to design and operate multidisciplinary floats.

Department Affiliation

Ocean Physics

Education

B.A. Physics, Harvard University, 1976

M.S. Applied Physics, Harvard University, 1976

Ph.D. Oceanography, MIT/WHOI, 1980

Projects

Air–Sea Momentum Flux in Tropical Cyclones

The intensity of a tropical cyclone is influenced by two competing physical processes at the air–sea interface. It strengthens by drawing thermal energy from the underlying warm ocean but weakens due to the drag of rough ocean surface. These processes change dramatically as the wind speed increases above 30 m/s.

More Info

30 Mar 2018

The project is driven by the following science questions: (1) How important are equilibrium-range waves in controlling the air-sea momentum flux in tropical cyclones? We hypothesize that for wind speeds higher than 30 m/s the stress on the ocean surface is larger than the equilibrium-range wave breaking stress. (2) How does the wave breaking rate vary with wind speed and the complex surface wave field? At moderate wind speeds the wave breaking rate increases with increasing speed. Does this continue at extreme high winds? (3) Can we detect acoustic signatures of sea spray at high winds? Measurements of sea spray in tropical cyclones are very rare. We will seek for the acoustic signatures of spray droplets impacting the ocean surface. (4) What are the processes controlling the air-sea momentum flux?

Salinity Processes in the Upper Ocean Regional Study — SPURS

The NASA SPURS research effort is actively addressing the essential role of the ocean in the global water cycle by measuring salinity and accumulating other data to improve our basic understanding of the ocean's water cycle and its ties to climate.

15 Apr 2015

Lateral Mixing

Small scale eddies and internal waves in the ocean mix water masses laterally, as well as vertically. This multi-investigator project aims to study the physics of this mixing by combining dye dispersion studies with detailed measurements of the velocity, temperature and salinity field during field experiments in 2011 and 2012.

1 Sep 2012

More Projects

Videos

Lagrangian Submesoscale Experiment — LASER

A science team led by Eric D'Asaro conducted a unique mission to deploy over 1,000 ocean drifters in a small area of the Gulf of Mexico. The real-time data collected from the biodegradable drifters recalibrated understanding of ocean currents.

22 Jan 2018

Eddies Drive Particulate Carbon Deep in the Ocean During the North Atlantic Spring Bloom

The swirling eddies that create patches of stratification to hold phytoplankton near the sunlit surface during the North Atlantic spring bloom, also inject the floating organic carbon particles deep into the ocean. The finding, reported in Science, has important implications for the ocean's role in the carbon cycle on Earth: phytoplankton use carbon dioxide absorbed by the ocean from the atmosphere during the bloom and the resulting organic carbon near the sea surface is sequestered in the deep ocean.

27 Mar 2015

Storm Chasing in the North Pacific

A research cruise was conducted in October 2012 to find stormy conditions and heavy seas far out in the Pacific Ocean. The objectives were to measure, with remote sensing technologies, the intense winds, large waves, and the turbulence generated by wave breaking. Understanding the balance of energy going into and breaking out of waves will be used to improve open ocean wave forecasts.

2 Nov 2012

More Videos

Publications

2000-present and while at APL-UW

Estimates of surface waves using subsurface EM-APEX floats under Typhoon Fanapi 2010

Hsu, J.-Y., R.-C. Lien, E.A. D'Asaro, T.B. Sanford, "Estimates of surface waves using subsurface EM-APEX floats under Typhoon Fanapi 2010," J. Atmos. Ocean. Technol., 35, 1053-1075, doi:10.1175/JTECH-D-17-0121.1, 2018.

More Info

1 May 2018

Seven subsurface Electromagnetic Autonomous Profiling Explorer (EM-APEX) floats measured the voltage induced by the motional induction of seawater under Typhoon Fanapi in 2010. Measurements were processed to estimate high-frequency oceanic velocity variance associated with surface waves. Surface wave peak frequency fp and significant wave height Hs are estimated by a nonlinear least squares fitting to oceanic velocity, assuming a broadband JONSWAP surface wave spectrum. The Hs is further corrected for the effects of float rotation, Earth's geomagnetic field inclination, and surface wave propagation direction. The fp is 0.08–0.10 Hz, with the maximum fp of 0.10 Hz in the rear-left quadrant of Fanapi, which is ~0.02 Hz higher than in the rear-right quadrant. The Hs is 6–12 m, with the maximum in the rear sector of Fanapi. Comparing the estimated fp and Hs with those assuming a single dominant surface wave yields differences of more than 0.02 Hz and 4 m, respectively. The surface waves under Fanapi simulated in the WAVEWATCH III (ww3) model are used to assess and compare to float estimates. Differences in the surface wave spectra of JONSWAP and ww3 yield uncertainties of <5% outside Fanapi’s eyewall and >10% within the eyewall. The estimated fp is 10% less than the simulated ww3 peak wave frequencey before the passage of Fanapi’s eye and 20% less after eye passage. Most differences between Hs and simulated ww3 significant wave height are <2 m except those in the rear-left quadrant of Fanapi, which are ~5 m. Surface wave estimates are important for guiding future model studies of tropical cyclone wave–ocean interactions.

Drogue-loss detection for surface drifters during the Lagrangian Submesoscale Experiment (LASER)

Haza, A.C., and 12 others, including E.A. D'Asaro and A. Shcherbina, "Drogue-loss detection for surface drifters during the Lagrangian Submesoscale Experiment (LASER)," J. Atmos. Ocean. Technol., 35, 705-725, doi:10.1175/JTECH-D-17-0143.1, 2018.

More Info

1 Apr 2018

The Lagrangian Submesoscale Experiment (LASER) was designed to study surface flows during winter conditions in the northern Gulf of Mexico. More than 1000 mostly biodegradable drifters were launched. The drifters consisted of a surface floater extending 5 cm below the surface, containing the satellite tracking system, and a drogue extending 60 cm below the surface, hanging beneath the floater on a flexible tether. On some floats, the drogue separated from the floater during storms. This paper describes methods to detect drogue loss based on two properties that distinguish drogued from undrogued drifters. First, undrogued drifters often flip over, pointing their satellite antenna downward and thus intermittently reducing the frequency of GPS fixes. Second, undrogued drifters respond to wind forcing more than drogued drifters. A multistage analysis is used: first, two properties are used to create a preliminary drifter classification; then, the motion of each unclassified drifter is compared to that of its classified neighbors in an iterative process for nearly all of the drifters. The algorithm classified drifters with a known drogue status with an accuracy of virtually 100%. Drogue loss times were estimated with a precision of less than 0.5 and 3 h for 60% and 85% of the drifters, respectively. An estimated 40% of the drifters lost their drogues in the first 7 weeks, with drogue loss coinciding with storm events, particularly those with steep waves. Once the drogued and undrogued drifters are classified, they can be used to quantify the differences in material dispersion at different depths.

Observing finescale oceanic velocity structure with an autonomous Nortek acoustic Doppler current profiler

Shcherbina, A.Y., E.A. D'Asaro, and S. Nylund, "Observing finescale oceanic velocity structure with an autonomous Nortek acoustic Doppler current profiler," J. Atmos. Oceanic Technol., 35, 411–427, doi:10.1175/JTECH-D-17-0108.1, 2018.

More Info

1 Feb 2018

This paper describes the instrumentation and techniques for long-term targeted observation of the centimeter-scale velocity structure within the oceanic surface boundary layer, made possible by the recent developments in capabilities of autonomous platforms and self-contained pulse-coherent acoustic Doppler current profilers (ADCPs). Particular attention is paid to the algorithms of ambiguity resolution ("unwrapping") of pulse-coherent Doppler velocity measurements. The techniques are demonstrated using the new Nortek Signature1000 ADCP mounted on a Lagrangian float, a combination shown to be capable of observing ocean turbulence in a number of recent studies. Statistical uncertainty of the measured velocities in relation to the ADCP setup is also evaluated. Described techniques and analyses should be broadly applicable to other autonomous and towed applications of pulse-coherent ADCPs.

More Publications

In The News

NASA, NSF expedition to study ocean carbon embarks in August from Seattle

UW News, Hannah Hickey

Dozens of scientists, as well as underwater drones and other high-tech ocean instruments, will set sail from Seattle in mid-August. Funded by NASA and the National Science Foundation, the team will study the life and death of the small organisms that play a critical role in removing carbon dioxide from the atmosphere, and in the ocean’s carbon cycle.

21 Jun 2018

Scientists watch ocean plastic hotspots form in real time

NewsDeeply, Erica Cirino

Researchers tracked hundreds of buoys deployed in the Gulf of Mexico. Not only did the buoys not spread out – many concentrated into an area the size of a football stadium. The findings may help scientists pinpoint areas for plastic or oil-spill cleanup.

6 Feb 2018

Temporary 'bathtub drains' in the ocean concentrate flotsam

UW News, Hannah Hickey

An experiment featuring the largest flotilla of sensors ever deployed in a single area provides new insights into how marine debris, or flotsam, moves on the surface of the ocean.

18 Jan 2018

More News Items

Inventions

Open Water Detection from Beneath Sea Ice

Record of Invention Number: 47655

Eric D'Asaro, Andrey Shcherbina

Disclosure

16 Mar 2016

Acoustics Air-Sea Interaction & Remote Sensing Center for Environmental & Information Systems Center for Industrial & Medical Ultrasound Electronic & Photonic Systems Ocean Engineering Ocean Physics Polar Science Center
Close

 

Close