APL Home
APL-UW Home

Jobs About Campus Map Contact Intranet

Ramsey Harcourt

Principal Oceanographer

Email

harcourt@apl.washington.edu

Phone

206-221-4662

Research Interests

Large Eddy Simulation (LES), Computational Fluid Dynamics, Deep Convection, Wave and Ice Boundary Layers, Response of Drifters to Convection

Department Affiliation

Ocean Physics

Publications

2000-present and while at APL-UW

Quantifying upper ocean turbulence driven by surface waves

D'Asaro, E.A., J. Thomson, A.Y. Shcherbina, R.R. Harcourt, M.F. Cronin, M.A. Hemer, and B. Fox-Kemper, "Quantifying upper ocean turbulence driven by surface waves," Geophys. Res. Lett, 41, 102-107, doi:10.1002/1013GL058193, 2013.

More Info

1 Jan 2014

Nearly all operational ocean models use air-sea fluxes and the ocean shear and stratification to estimate upper ocean boundary layer mixing rates. This approach implicitly parameterizes surface wave effects in terms of these inputs. Here, we test this assumption using parallel experiments in a lake with small waves and in the open ocean with much bigger waves. Under the same wind stress and adjusting for buoyancy flux, we find the mixed layer average turbulent vertical kinetic energy in the open ocean typically twice that in the lake. The increase is consistent with models of Langmuir turbulence, in which the wave Stokes drift, and not wave breaking, is the dominant mechanism by which waves energize turbulence in the mixed layer. Applying these same theories globally, we find enhanced mixing and deeper mixed layers resulting from the inclusion of Langmuir turbulence in the boundary layer parameterization, especially in the Southern Ocean.

Waves and the equilibrium range at Ocean Weather Station P

Thomson, J., E.A. D'Asaro, M.F. Cronin, W.E. Rogers, R.R. Harcourt, and A. Shcherbina, "Waves and the equilibrium range at Ocean Weather Station P," J. Geophys. Res., 118, 5951-5962, doi:10.1002/2013JC008837, 2013.

More Info

1 Nov 2013

Wave and wind measurements at Ocean Weather Station P (OWS-P, 50°N 145°W) are used to evaluate the equilibrium range of surface wave energy spectra. Observations are consistent with a local balance between wind input and breaking dissipation, as described by Philips (1985). The measurements include direct covariance wind stress estimates and wave breaking dissipation rate estimates during a 3 week research cruise to OWS-P. The analysis is extended to a wider range of conditions using observations of wave energy spectra and wind speed during a 2 year mooring deployment at OWS-P. At moderate wind speeds (5–15 m/s), mooring wave spectra are in agreement, within 5% uncertainty, with the forcing implied by standard drag laws and mooring wind measurements. At high wind speeds (>15 m/s), mooring wave spectra are biased low, by 13%, relative to the forcing implied by standard drag laws and mooring wind measurements. Deviations from equilibrium are associated with directionality and variations at the swell frequencies. A spectral wave hindcast accurately reproduces the mooring observations, and is used to examine the wind input.

A second moment closure model of Langmuir turbulence

Harcourt, R.R., "A second moment closure model of Langmuir turbulence," J. Phys. Oceanogr., 43, 673-697, doi:10.1175/JPO-D-12-0105, 2013.

1 Apr 2013

More Publications

Determining vertical water velocities from Seaglider

Frajka-Williams, E., C.C. Eriksen, P.B. Rhines, and R.R. Harcourt, "Determining vertical water velocities from Seaglider," J. Atmos. Ocean. Technol., 28, 1641-1656, doi:10.1175/2011JTECHO830.1, 2011.

More Info

1 Dec 2011

Vertical velocities in the world's oceans are typically small, less than 1 cm s-1, posing a significant challenge for observational techniques. Seaglider, an autonomous profiling instrument, can be used to estimate vertical water velocity in the ocean. Using a Seaglider's flight model and pressure observations, vertical water velocities are estimated along glider trajectories in the Labrador Sea before, during, and after deep convection. Results indicate that vertical velocities in the stratified ocean agree with the theoretical Wentzel–Kramers–Brillouin (WKB) scaling of w; and in the turbulent mixed layer, scale with buoyancy, and wind forcing. It is estimated that accuracy is to within 0.5 cm s-1. Because of uncertainties in the flight model, velocities are poor near the surface and deep apogees, and during extended roll maneuvers. Some of this may be improved by using a dynamic flight model permitting acceleration and by better constraining flight parameters through pilot choices during the mission.

Enhanced turbulence and energy dissipation at ocean fronts

D'Asaro, E., C. Lee, L. Rainville, L. Thomas, and R. Harcourt, "Enhanced turbulence and energy dissipation at ocean fronts," Science, 332, 318-322, doi:0.1126/science.1201515, 2011.

More Info

15 Apr 2011

The ocean surface boundary layer mediates air-sea exchange. In the classical paradigm and in current climate models, its turbulence is driven by atmospheric forcing. Observations at a 1-km-wide front within the Kuroshio found the rate of energy dissipation within the boundary layer to be enhanced by 10 to 20 times, suggesting that the front not the atmospheric forcing supplied the energy for the turbulence. The data quantitatively support the hypothesis that winds aligned with the frontal velocity catalyzed a release of energy from the front to the turbulence. The resulting boundary layer is stratified, in contrast to the classically well-mixed layer. These effects will be strongest at the intense fronts found in the Kuroshio, Gulf Stream, and Antarctic Circumpolar Current, key players in the climate system.

Measurement of vertical kinetic energy and vertical velocity skewness in oceanic boundary layers by imperfectly Lagrangian floats

Harcourt, R.R., and E.A. D'Asaro, "Measurement of vertical kinetic energy and vertical velocity skewness in oceanic boundary layers by imperfectly Lagrangian floats," J. Atmos. Ocean. Technol., 27, 1918-1935, doi:10.1175/2010JTECHO731.1, 2010.

1 Nov 2010

Three-dimensional structure and temporal evolution of submesoscale thermohaline intrusions in the North Pacific subtropical frontal zone

Shcherbina, A.Y., M.C. Gregg, M.H. Alford, M.H., and R.R. Harcourt, "Three-dimensional structure and temporal evolution of submesoscale thermohaline intrusions in the North Pacific subtropical frontal zone," J. Phys. Oceanogr., 40, 1669-1689, doi:10.1175/2010JPO4373.1, 2010.

More Info

1 Aug 2010

Four instances of persistent intrusive deformation of the North Pacific Subtropical Front were tagged individually by a Lagrangian float and tracked for several days. Each feature was mapped in three dimensions using repeat towed observations referenced to the float. Isohaline surface deformations in the frontal zone included sheetlike folds elongated in the alongfront direction and narrow tongues extending across the front. All deformations appeared as protrusions of relatively cold, and fresh, water across the front. No corresponding features of the opposite sign or isolated lenslike structures were observed. The sheets were O(10 m) thick, protruded about 10 km into the warm saline side of the front, and were coherent for 10–30 km along the front. Having about the same thickness and cross-frontal extent as the sheets, tongues extended less than 5 km along the front.

All of the intrusions persisted as long as they were followed, several days to one week. Their structures evolved on both inertial (23 h) and subinertial (10 days) time scales in response to differential lateral advection. The water mass surrounding the intrusions participated in gradual anticyclonic rotation as a part of a mesoscale meander of the subtropical front. The intrusions may be interpreted as a manifestation of three-dimensional submesoscale turbulence of the frontal zone, driven by the mesoscale. Absence of large features of the opposite sign may be indicative of the asymmetry of the underlying dynamics.

Characterizing thermohaline intrusions in the North Pacific subtropical frontal zone

Shcherbina, A.Y., M.C. Gregg, M.H. Alford, and R.R. Harcourt, "Characterizing thermohaline intrusions in the North Pacific subtropical frontal zone," J. Phys. Oceanogr., 39, 2735-2756, 2009.

More Info

1 Nov 2009

A monthlong field survey in July 2007, focused on the North Pacific subtropical frontal zone (STFZ) near 30°N, 158°W, combined towed depth-cycling conductivity-temperature-depth (CTD) profiling with shipboard current observations. Measurements were used to investigate the distribution and structure of thermohaline intrusions. The study revealed that local extrema of vertical salinity profiles, often used as intrusion indicators, were only a subset of a wider class of distortions in thermohaline fields due to interleaving processes. A new method to investigate interleaving based on diapycnal spiciness curvature was used to describe an expanded class of laterally coherent intrusions. STFZ intrusions were characterized by their overall statistics and by a number of case studies. Thermohaline interleaving was particularly intense within 5 km of two partially compensated fronts, where intrusions with both positive and negative salinity anomalies were widespread. The vertical and cross-frontal scales of the intrusions were on the order of 10 m and 5 km, respectively. Though highly variable, the slopes of these features were typically intermediate between those of isopycnals and isohalines. Although the influence of double-diffusive processes sometime during the evolution of intrusions could not be excluded, the broad spectrum of the observed features suggests that any role of double diffusion was secondary.

Large-eddy simulation of Langmuir turbulence in pure wind seas

Harcourt, R.R., and E.A. D'Asaro, "Large-eddy simulation of Langmuir turbulence in pure wind seas," J. Phys. Oceanogr., 38, 1542-1562, 2008.

1 Jul 2008

Thermobaric cabbeling over Maud Rise: Theory and large eddy simulation

Harcourt, R.R., "Thermobaric cabbeling over Maud Rise: Theory and large eddy simulation," Prog. Oceanogr., 67, 186-244, DOI: 10.1016/j.pocean.2004.12.001, 2005

More Info

1 Oct 2005

A Large Eddy Simulation (LES) of the wintertime upper ocean below seasonal Antarctic ice cover over Maud Rise was carried out using observed time-dependent surface forcing from 1994 Antarctic Zone Flux Experiment (ANZFLUX) observations. Surface ice formation increases the density of the cold, fresher Surface Mixed Layer (SML), that overlies warmer, saltier Weddell Deep Water (WDW). This reduces the stability of the thermocline until it reaches a critical point for instabilities arising from the nonlinear equation of state (NES) for seawater density ρ. This simulation was intended to model the thermobaric detrainment of SML fluid, a NES instability predicted to result from the dependence of seawater density on the product ΘP of temperature and pressure.

Instead, model results demonstrate a different instability arising from the combination of thermobaricity with cabbeling, the NES effect due primarily to the dependence of ρ on Θ2. This combined thermobaric cabbeling instability drives turbulent convection in a deep interior mixed layer (IML) that may grow hundreds of meters thick below the thermocline, largely decoupled from SML dynamics. In the LES, thermobaric cabbeling and IML convection shoals the SML through entrainment from below until ice motion increases in the observationally-based model forcing. Increased upper ocean model heat flux due to higher ice speed melts surface ice, increasing thermocline stratification and eventually bringing the simulated instability to a halt.

In an auxiliary simulation the lull preceding strong ice motion in field observations is artificially extended by temporarily holding model surface forcing constant until the SML shoals entirely, bringing the modified WDW of the IML, 2°C above freezing, directly to the surface. Subsequently, reverting to the observed surface forcing and its attendant strong ice motion melts the ice cover entirely, demonstrating a possible mechanism for open ocean Antarctic polynya formation. The same process, as halted prematurely in the LES using the forcing observed, may also be responsible for thick, deep internal layers and localized "chimney" structures observed in the Weddell Sea.

Fully Lagrangian floats in Labrador Sea deep convection: Comparison of numerical and experimental results

Harcourt, R.R., E.L. Steffen, R.W. Garwood, and E.A. D'Asaro, "Fully Lagrangian floats in Labrador Sea deep convection: Comparison of numerical and experimental results," J. Phys. Oceanogr., 32, 493-510, doi: 10.1175/1520-0485(2002)032, 2002.

More Info

1 Feb 2002

Measurements of deep convection from fully Lagrangian floats deployed in the Labrador Sea during February and March 1997 are compared with results from model drifters embedded in a large eddy simulation (LES) of the rapidly deepening mixed layer. The deep Lagrangian floats (DLFs) have a large vertical drag, and are designed to nearly match the density and compressibility of seawater. The high-resolution numerical simulation of deep convective turbulence uses initial conditions and surface forcing obtained from in situ oceanic and atmospheric observations made by the R/V Knorr. The response of model floats to the resolved large eddy fields of buoyancy and velocity is simulated for floats that are 5 g too buoyant, as well as for floats that are correctly ballasted. Mean profiles of potential temperature, Lagrangian rates of heating and acceleration, vertical turbulent kinetic energy (TKE), vertical heat flux, potential temperature variance, and float probability distribution functions (PDFs) are compared for actual and model floats.

Horizontally homogeneous convection, as represented by the LES model, accounts for most of the first and second order statistics from float observations, except that observed temperature variance is several times larger than model variance. There are no correspondingly large differences in vertical TKE, heat flux, or mixed layer depth. The augmented temperature variance may be due to mixing across large-scale temperature and salinity gradients that are largely compensated in buoyancy. The rest of the DLF statistics agree well with the response of correctly ballasted model floats in the lowest 75% of the mixed layer, and are less consistent with results from buoyantly ballasted model floats.

Other differences between observation and simulation in the mean profiles of heat flux, vertical TKE, and Lagrangian heating and vertical acceleration rates are confined to the upper quarter of the mixed layer. These differences are small contributions to layer-averaged quantities, but represent statistically significant profile features. Larger observed values of heat flux and vertical TKE in the upper quarter of the mixed layer are more consistent with model floats ballasted light. Float buoyancy, however, cannot fully account for the observed PDFs, temperature profiles, and Lagrangian rates of heating and acceleration. A test of Lagrangian self-consistency comparing vertical TKE and Lagrangian acceleration also shows that DLF measurements are not significantly affected by excess float buoyancy. These upper mixed layer features may instead be due to the interaction of wind-driven currents and baroclinicity.

Acoustics Air-Sea Interaction & Remote Sensing Center for Environmental & Information Systems Center for Industrial & Medical Ultrasound Electronic & Photonic Systems Ocean Engineering Ocean Physics Polar Science Center
Close

 

Close

 

Close