Campus Map

Wayne Kreider

Senior Engineer






Bachelor of Science Engineering Science & Mechanics, Virginia Tech, 1993

Master of Science Engineering Mechanics, Virginia Tech, 1995

Doctor of Philosophy Bioengineering, University of Washington, 2008


2000-present and while at APL-UW

Mechanical decellularization of tissue volumes using boiling histotripsy

Wang, Y.-N., T.D. Khokhlova, S. Buravkov, V. Chernikov, W. Greider, A. Partanen, N. Farr, A. Maxwell, G.R. Schade, and V.A. Khokhlova, "Mechanical decellularization of tissue volumes using boiling histotripsy," Phys. Med. Biol., 6, 235023, doi:

More Info

4 Dec 2018

High intensity focused ultrasound (HIFU) is rapidly advancing as an alternative therapy for non-invasively treating specific cancers and other pathological tissues through thermal ablation. A new type of HIFU therapy — boiling histotripsy (BH) — aims at mechanical fractionation of into subcellular fragments, with a range of accompanying thermal effects that can be tuned from none to substantial depending on the requirements of the application. The degree of mechanical tissue damage induced by BH has been shown to depend on the tissue type, with collagenous structures being most resistant, and cellular structures being most sensitive. This has been reported for single BH lesions, but has not been replicated in large volumes. Such tissue selectivity effect has potential uses involving tissue decellularization for biofabrication technologies as well as mechanical ablation by BH while sparing critical structures. The goal of this study was to investigate tissue decellularization effect in larger, clinically relevant liquefied volumes of tissue, and to evaluate the accumulated thermal effect in the volumetric lesions under different exposure parameters. All BH exposures were performed with a 256-element 1.2-MHz array of a magnetic resonance imaging — guided HIFU (MR-HIFU) clinical system (Sonalleve V1, Profound Medical Inc, Mississauga, Canada). The volumetric BH lesions were produced in degassed ex vivo bovine liver using 1–10-ms long pulses with in situ shock amplitudes of 75–100 MPa at the focus and pulse repetition frequencies (PRFs) of 1–10 Hz covering a range of effects from pure mechanical homogenization to thermal ablation. Multimodal analysis of the lesions was then performed, including microstructure (histological), ultrastructure (electron microscopy), and molecular (biochemistry) methods. Results show a range of tissue effects in terms of the degree of tissue selectivity and the amount of heat generated in large BH lesions, thereby demonstrating potential for treatments tailored to different clinical applications.

Energy shielding by cavitation bubble clouds in burst wave lithotripsy

Maeda, K., A.D. Maxwell, T. Colonius, W. Kreider, and M.R. Bailey, "Energy shielding by cavitation bubble clouds in burst wave lithotripsy," J. Acoust. Soc. Am., 144, 2952-2961, doi:10.1121/1.5079641, 2018

More Info

1 Nov 2018

Combined laboratory experiment and numerical simulation are conducted on bubble clouds nucleated on the surface of a model kidney stone to quantify the energy shielding of the stone caused by cavitation during burst wave lithotripsy (BWL). In the experiment, the bubble clouds are visualized and bubble-scattered acoustics are measured. In the simulation, a compressible, multi-component flow solver is used to capture complex interactions among cavitation bubbles, the stone, and the burst wave. Quantitative agreement is confirmed between results of the experiment and the simulation. In the simulation, a significant shielding of incident wave energy by the bubble clouds is quantified. The magnitude of shielding can reach up to 90% of the energy of the incoming burst wave that otherwise would be transmitted into the stone, suggesting a potential loss of efficacy of stone comminution. There is a strong correlation between the magnitude of the energy shielding and the amplitude of the bubble-scattered acoustics, independent of the initial size and the void fraction of the bubble cloud within a range addressed in the simulation. This correlation could provide for real-time monitoring of cavitation activity in BWL.

Dependence of inertial cavitation induced by high intensity focused ultrasound on transducer F-number and nonlinear waveform distortion

Khokhlova, T., P. Rosnitskiy, C. Hunter, A. Maxwell, W. Kreider, G. Ter Haar, M. Costa, O. Sapozhnikov, and V. Khokhlova, "Dependence of inertial cavitation induced by high intensity focused ultrasound on transducer F-number and nonlinear waveform distortion," J. Acoust. Soc. Am., 144, 1160, doi:10.1121/1.5052260, 2018.

More Info

1 Sep 2018

Pulsed high intensity focused ultrasound was shown to enhance chemotherapeutic drug uptake in tumor tissue through inertial cavitation, which is commonly assumed to require peak rarefactional pressures to exceed a certain threshold. However, recent studies have indicated that inertial cavitation activity also correlates with the presence of shocks at the focus. The shock front amplitude and corresponding peak negative pressure (p–) in the focal waveform are primarily determined by the transducer F-number: less focused transducers produce shocks at lower p–. Here, the dependence of inertial cavitation activity on the transducer F-number was investigated in agarose gel by monitoring broadband noise emissions with a coaxial passive cavitation detector (PCD) during pulsed exposures (pulse duration 1 ms, pulse repetition frequency 1 Hz) with p– varying within 1–15 MPa. Three 1.5 MHz transducers with the same aperture, but different focal distances (F-numbers 0.77, 1.02, 1.52) were used. PCD signals were processed to extract cavitation probability, persistence, and mean noise level. At the same p–, all metrics indicated enhanced cavitation activity at higher F-numbers; specifically, cavitation probability reached 100% when shocks formed at the focus. These results provide further evidence supporting the excitation of inertial cavitation at reduced p– by waveforms with nonlinear distortion and shocks.

More Publications


Audio Feedback for Improving the Accuracy of BWL Targeting

Record of Invention Number: 48254

Mike Bailey, Bryan Cunitz, Barbrina Dunmire, Christopher Hunter, Wayne Kreider, Adam Maxwell, Yak-Nam Wang


25 Jan 2018

Methods and Systems for Non-invasive Treatment of Tissue Using High Intensity Focused Ultrasound Therapy

Patent Number: 9,700,742

Michael Canney, Mike Bailey, Larry Crum, Joo Ha Hwang, Tatiana Khokhlova, Vera Khokhlova, Wayne Kreider, Oleg Sapozhnikov

More Info


11 Jul 2017

Methods and systems for non-invasive treatment of tissue using high intensity focused ultrasound ("HIFU") therapy. A method of non-invasively treating tissue in accordance with an embodiment of the present technology, for example, can include positioning a focal plane of an ultrasound source at a target site in tissue. The ultrasound source can be configured to emit HIFU waves. The method can further include pulsing ultrasound energy from the ultrasound source toward the target site, and generating shock waves in the tissue to induce boiling of the tissue at the target site within milliseconds. The boiling of the tissue at least substantially emulsifies the tissue.

Portable Acoustic Holography Systems for Therapeutic Ultrasound Sources and Associated Devices and Methods

Patent Number: 9,588,491

Oleg Sapozhnikov, Mike Bailey, Vera Khokhlova, Wayne Kreider

More Info


7 Mar 2017

The present technology relates generally to portable acoustic holography systems for therapeutic ultrasound sources, and associated devices and methods. In some embodiments, a method of characterizing an ultrasound source by acoustic holography includes the use of a transducer geometry characteristic, a transducer operation characteristic, and a holography system measurement characteristic. A control computer can be instructed to determine holography measurement parameters. Based on the holography measurement parameters, the method can include scanning a target surface to obtain a hologram. Waveform measurements at a plurality of points on the target surface can be captured. Finally, the method can include processing the measurements to reconstruct at least one characteristic of the ultrasound source.

More Inventions

Acoustics Air-Sea Interaction & Remote Sensing Center for Environmental & Information Systems Center for Industrial & Medical Ultrasound Electronic & Photonic Systems Ocean Engineering Ocean Physics Polar Science Center