APL-UW Home

Jobs
About
Campus Map
Contact
Privacy
Intranet

Kristin Laidre

Principal Oceanographer

Assistant Professor, Fisheries

Email

klaidre@apl.washington.edu

Phone

206-616-9030

Department Affiliation

Polar Science Center

Kristin Laidre's Website

http://staff.washington.edu/klaidre

Publications

2000-present and while at APL-UW

Survey-based assessment of the frequency and potential impacts of recreation on polar bears

Rode, K.D., and 12 others including K.L. Laidre, "Survey-based assessment of the frequency and potential impacts of recreation on polar bears," Biol. Conserv., 227, 121-132, doi:10.1016/j.biocon.2018.09.008, 2018.

More Info

1 Nov 2018

Conservation plans for polar bears (Ursus maritimus) typically cannot prescribe management actions to address their primary threat: sea ice loss associated with climate warming. However, there may be other stressors that compound the negative effects of sea ice loss which can be mitigated. For example, Arctic tourism has increased concurrent with polar bears increasingly using terrestrial habitats, which creates the potential for increased human-bear interactions. Little is known about the types, frequency, or potential impacts of recreation. We conducted a Delphi survey among experts who live and work in polar bear habitats, followed by an internet-based survey to which 47 managers, tour operators, community members, and scientists contributed. Participants identified viewing-based recreation as increasing and affecting the largest proportion of bears within subpopulations that come ashore during the ice-free season. Survey respondents suggested that negative effects of viewing, including displacement and habituation, could be reduced by restricting human use areas and distances between bears and people. Killing of bears in defense was associated more with camping or hunting for other species than other recreations, and may be mitigated with deterrents. Snowmobiling was the most common recreation across the polar bears' range, and reportedly caused some den abandonment and displacement. However, respondents estimated that <10% of polar bears are exposed to most types of recreation and <50% surmised any negative impacts. Nevertheless, mitigating some of the negative impacts identified in this study may become increasingly important as polar bears cope with sea ice loss.

Vulnerability of Arctic marine mammals to vessel traffic in the increasingly ice-free Northwest Passage and Northern Sea Route

Hauser, D.D.W., K.L. Laidre, and H.L. Stern, "Vulnerability of Arctic marine mammals to vessel traffic in the increasingly ice-free Northwest Passage and Northern Sea Route," Proc. Nat. Acad. Sci. USA, EOR, doi:10.1073/pnas.1803543115, 2018

More Info

2 Jul 2018

The fabled Northwest Passage and Northern Sea Route that were once the quests of early Western explorers are now increasingly sea ice–free, with routine vessel transits expected by midcentury. The potential impacts of this novel vessel traffic on endemic Arctic marine mammal (AMM) species are unknown despite their critical social and ecological roles in the ecosystem and widely recognized susceptibility to ice loss. We developed a vulnerability assessment of 80 subpopulations of seven AMM species to vessel traffic during the ice-free season. Vulnerability scores were based on the combined influence of spatially explicit exposure to the sea routes and a suite of sensitivity variables. More than half of AMM subpopulations (42/80) are exposed to open-water vessel transits in the Arctic sea routes. Narwhals (Monodon monoceros) were estimated to be most vulnerable to vessel impacts, given their high exposure and sensitivity, and polar bears (Ursus maritimus) were estimated to be the least vulnerable because of their low exposure and sensitivity. Regions with geographic bottlenecks, such as the Bering Strait and eastern Canadian Arctic, were characterized by two to three times higher vulnerability than more remote regions. These pinch points are obligatory pathways for both vessels and migratory AMMs, and so represent potentially high conflict areas but also opportunities for conservation-informed planning. Some of the species and regions identified as least vulnerable were also characterized by high uncertainty, highlighting additional data and monitoring needs. Our quantification of the heterogeneity of risk across AMM species provides a necessary first step toward developing best practices for maritime industries poised to advance into this rapidly changing seascape.

Sea surface temperature predicts the movements of an Arctic cetacean: The bowhead whale

Chambault, P., C.M. Albertsen, T.A. Patterson, R.G. Hanson, O. Tervo, K.L. Laidre, and M.P. Heide-Jørgensen, "Sea surface temperature predicts the movements of an Arctic cetacean: The bowhead whale," Sci. Rep., 8, 9698, doi:10.1038/s41598-018-27966-1, 2018.

More Info

25 Jun 2018

The effects of climate change constitute a major concern in Arctic waters due to the rapid decline of sea ice, which may strongly alter the movements and habitat availability of Arctic marine mammals. We tracked 98 bowhead whales by satellite over an 11-year period (2001–2011) in Baffin Bay — West Greenland to investigate the environmental drivers (specifically sea surface temperature and sea ice) involved in bowhead whale’s movements. Movement patterns differed according to season, with aggregations of whales found at higher latitudes during spring and summer likely in response to sea-ice retreat and increasing sea temperature (SST) facilitated by the warm West Greenland Current. In contrast, the whales moved further south in response to sea temperature decrease during autumn and winter. Statistical models indicated that the whales targeted a narrow range of SSTs from –0.5 to 2°C. Sea surface temperatures are predicted to undergo a marked increase in the Arctic, which could expose bowhead whales to both thermal stress and altered stratification and vertical transport of water masses. With such profound changes, bowhead whales may face extensive habitat loss. Our results highlight the need for closer investigation and monitoring in order to predict the extent of future distribution changes.

More Publications

In The News

Harsh climate: The struggle to track global sea level rise

Reuters, Lucas Jackson and Elizabeth Culliford

Scientists face extreme challenges when studying how climate change will affect Greenland's glaciers and sea level rise.

20 Sep 2018

Greenland's polar bear hunters face a climate of change

Hakai Magazine, Cheryl Katz

Kristin Laidre, who has studied Greenland’s polar bears for 20 years, is part of a Pew marine conservation project documenting the effects of climate change on subsistence hunters. "You can really get insights into the system, you can hear about observations that you would never have been able to make," she says.

12 Sep 2018

NASA gets up close with Greenland's melting ice

Astrobiology Magazine

NASA's Oceans Melting Greenland (OMG) campaign takes to the sky this week for its third year of gathering data on how the ocean around Greenland is melting its glaciers. Kristin Laidre says, "We don’t know a lot about what’s important to narwhals — how physical oceanography influences their habitat preferences. OMG is collecting really detailed information on the physics of the system. For us, having access to those data and working with the OMG investigators can bring us a long way in studying these animals."

23 Aug 2018

More News Items

Acoustics Air-Sea Interaction & Remote Sensing Center for Environmental & Information Systems Center for Industrial & Medical Ultrasound Electronic & Photonic Systems Ocean Engineering Ocean Physics Polar Science Center
Close

 

Close