Campus Map

Caren Marzban

Principal Physicist

Lecturer, Statistics






B.S. Physics, Michigan State University, 1981

Ph.D. Theoretical Physics, University of North Carolina, 1988


2000-present and while at APL-UW

On the effect of model parameters on forecast objects

Marzban, C., C. Jones, N. Li, and S. Sandgathe, "On the effect of model parameters on forecast objects," Geosci. Model Dev., 11, 1577-1590, doi:10.5194/gmd-11-1577-2018, 2018.

More Info

19 Apr 2018

Many physics-based numerical models produce a gridded, spatial field of forecasts, e.g., a temperature "map". The field for some quantities generally consists of spatially coherent and disconnected "objects". Such objects arise in many problems, including precipitation forecasts in atmospheric models, eddy currents in ocean models, and models of forest fires. Certain features of these objects (e.g., location, size, intensity, and shape) are generally of interest. Here, a methodology is developed for assessing the impact of model parameters on the features of forecast objects. The main ingredients of the methodology include the use of (1) Latin hypercube sampling for varying the values of the model parameters, (2) statistical clustering algorithms for identifying objects, (3) multivariate multiple regression for assessing the impact of multiple model parameters on the distribution (across the forecast domain) of object features, and (4) methods for reducing the number of hypothesis tests and controlling the resulting errors. The final "output" of the methodology is a series of box plots and confidence intervals that visually display the sensitivities. The methodology is demonstrated on precipitation forecasts from a mesoscale numerical weather prediction model.

Sensitivity analysis of the spatial structure of forecasts in mesoscale models: Continuous model parameters

Marzban, C., X. Du, S. Sandgate, J.D. Doyle, Y. Jin, and N.C. Lederer, "Sensitivity analysis of the spatial structure of forecasts in mesoscale models: Continuous model parameters," Mon. Weather Rev., 146, 967-983, doi:10.1175/MWR-D-17-0275.1, 2018.

More Info

1 Apr 2018

A methodology is proposed for examining the effect of model parameters (assumed to be continuous) on the spatial structure of forecasts. The methodology involves several statistical methods of sampling and inference to assure the sensitivity results are statistically sound. Specifically, Latin hypercube sampling is employed to vary the model parameters, and multivariate multiple regression is used to account for spatial correlations in assessing the sensitivities. The end product is a geographic "map" of p values for each model parameter, allowing one to display and examine the spatial structure of the sensitivity. As an illustration, the effect of 11 model parameters in a mesoscale model on forecasts of convective and grid-scale precipitation, surface air temperature, and water vapor is studied. A number of spatial patterns in sensitivity are found. For example, a parameter that controls the fraction of available convective clouds and precipitation fed back to the grid scale influences precipitation forecasts mostly over the southeastern region of the domain; another parameter that modifies the surface fluxes distinguishes between precipitation forecasts over land and over water. The sensitivity of surface air temperature and water vapor forecasts also has distinct spatial patterns, with the specific pattern depending on the model parameter. Among the 11 parameters examined, there is one (an autoconversion factor in the microphysics) that appears to have no influence in any region and on any of the forecast quantities.

Mixture models for estimating maximum blood flow velocity

Marzban, C., G. Wenxiao, and P.D. Mourad, "Mixture models for estimating maximum blood flow velocity," J. Ultrasound Med., 35, 93-101, doi:10.7863/ultra.14.05069, 2016.

More Info

1 Jan 2016

Objectives—A gaussian mixture model (GMM) was recently developed for estimating the probability density function of blood flow velocity measured with transcranial Doppler ultrasound data. In turn, the quantiles of the probability density function allow one to construct estimators of the “maximum” blood flow velocity. However, GMMs assume gaussianity, a feature that is not omnipresent in observed data. The objective of this work was to develop mixture models that do not invoke the gaussian assumption.

Methods—Here, GMMs were extended to a skewed GMM and a nongaussian kernel mixture model. All models were developed on data from 59 patients with closed head injuries from multiple hospitals in the United States, with ages ranging from 13 to 81 years and Glasgow Coma Scale scores ranging from 3 to 11. The models were assessed in terms of the log likelihood (a goodness-of-fit measure) and via visual comparison with the underlying spectrograms.

Results—Among the models examined, the skewed GMM showed a significantly (P< .05) higher log likelihood for 56 of the 59 patients and produced maximum flow velocity estimates consistent with the observed spectrograms for all patients. Kernel mixture models are generally less “robust” in that their quality is inconsistent across patients.

Conclusions—Among the models examined, it was found that the skewed GMM provided a better model of the data both in terms of the quality of the fit and in terms of visual comparison of the underlying spectrogram and the estimated maximum blood flow velocity. Nongaussian mixture models have potential for even higher-quality assessment of blood flow, but further development is called for.

More Publications


System and Methods for Tracking Finger and Hand Movement Using Ultrasound

Record of Invention Number: 47931

John Kucewicz, Brian MacConaghy, Caren Marzban


10 Jan 2017

Acoustics Air-Sea Interaction & Remote Sensing Center for Environmental & Information Systems Center for Industrial & Medical Ultrasound Electronic & Photonic Systems Ocean Engineering Ocean Physics Polar Science Center