APL-UW Home

Jobs
About
Campus Map
Contact
Privacy
Intranet

John Mickett

Senior Oceanographer

Email

jmickett@apl.washington.edu

Phone

206-897-1795

Department Affiliation

Ocean Physics

Projects

Submesoscale Mixed-Layer Dynamics at a Mid-Latitude Oceanic Front

SMILE: the Submesoscale MIxed-Layer Eddies experiment

More Info

1 Mar 2017

This experiment is aimed at increasing our understanding of the role of lateral processes in mixed-layer dynamics through a series of ship surveys and Lagrangian array deployments. Instrument deployments and surveys target the upper ocean's adjustment to winter atmospheric forcing events in the North Pacific subtropical front, roughly 800 km north of Hawaii.

This study will improve understanding of 1–10-km scale lateral processes in three-dimensional mixed-layer dynamics in a region of above-average atmospheric forcing, typical mid-ocean mesoscale advection and straining, and typical submesoscale activity. The results will improve the physical basis of mixed-layer parameterizations, leading to better model predictions of air-sea fluxes, gas transfer, and biological productivity.

Tasmania Internal Tide Experiment

The Tasmanian continental slope will be instrumented with a range of tools including moored profiler, chi-pods, CTDs, and gliders to understand the process, strength, and distribution of ocean mixing from breaking internal waves.

27 Nov 2011

Samoan Passage Abyssal Mixing

The Samoan Passage, 5500 m beneath the sea surface, is one of the "choke points" in the abyssal circulation. A veritable river of Antarctic Bottom water flows through it on its way into the North Pacific. As it enters the constriction, substantial turbulence, hydraulic processes and internal waves must occur, which modify the water. The overall goal is to understand these deep processes and the way they impact the flow, and to develop a strategy for eventually monitoring the flow through the Passage.

27 Sep 2011

More Projects

Videos

Environmental Sample Processor: A Sentry for Toxic Algal Blooms off the Washington Coast

An undersea robot that measures harmful algal species has been deployed by APL, UW, and NOAA researchers off the Washington coast near La Push. Algal bloom toxicity data are relayed to shore in near-real time and displayed through the NANOOS visualization system. The Environmental Sample Processor, or ESP, is taking measurements near the Juan de Fuca eddy, which is a known incubation site for toxic blooms that often travel toward coastal beaches, threatening fisheries and human health.

22 Jun 2016

ORCA Tracks the 'Blob'

A 'blob' of very warm surface water developed in the northeastern Pacific Ocean in 2014–2015 and its influence extended to the inland waters of Puget Sound throughout the summer of 2015. The unprecedented conditions were tracked by the ORCA (Oceanic Remote Chemical Analyzer) buoy network — an array of six heavily instrumented moored buoys in the Sound. ORCA data provided constant monitoring of evolving conditions and allowed scientists to warn of possible fish kill events in the oxygen-starved waters of Hood Canal well in advance.

The ORCA network is maintained by a partnership among APL-UW, the UW College of the Environment, and the UW School of Oceanography.

3 Nov 2015

ArcticMix 2015

APL-UW physical oceanographers John Mickett and Mike Gregg joined SIO colleagues during September 2015 in the Beaufort Sea aboard the R/V Sikuliaq to measure upper ocean mixing that billows heat from depth to the surface. These mixing dynamics may be an important factor in hastening sea ice melt during summer and delaying freeze-up in the fall.

14 Oct 2015

More Videos

Publications

2000-present and while at APL-UW

Generation and propagation of nonlinear internal waves in sheared currents over the Washington continental shelf

Hamann, M.M., M.H. Alford, and J.B. Mickett, "Generation and propagation of nonlinear internal waves in sheared currents over the Washington continental shelf," J. Geophys. Res., 123, 2381-2400, doi:10.1002/2017JC013388, 2018.

More Info

1 Apr 2018

The generation, propagation, and dissipation of nonlinear internal waves (NLIW) in sheared background currents is examined using 7 days of shipboard microstructure surveys and two moorings on the continental shelf offshore of Washington state. Surveys near the hypothesized generation region show semi‐diurnal (D2) energy flux is onshore and that the ratio of energy flux to group speed times energy (F/cgE) increases sharply at the shelf break, suggesting that the incident D2 internal tide is partially reflected and partially transmitted. NLIW appear at an inshore mooring at the leading edge of the onshore phase of the baroclinic tide, consistent with nonlinear transformation of the shoaling internal tide as their generation mechanism. Of the D2 energy flux observed at the eastern extent of the generation region (133 ± 18 Wm-1), approximately 30% goes into the NLIW observed inshore (36 ± 11 Wm-1). Inshore of the moorings, 7 waves are tracked into shallow (30–40 m) water, where a vertically sheared, southward current becomes strong. As train‐like waves propagate onshore, wave amplitudes of 25–30 m and energies of 5 MJ decrease to 12 m and 10 kJ, respectively. The observed direction of propagation rotates from 30°N of E to ~30° S of E in the strongly sheared region. Linear ray tracing using the Taylor‐Goldstein equation to incorporate parallel shear effects accounts for only a small portion of the observed rotation, suggesting that three‐dimensionality of the wave crests and the background currents is important here.

Warming and weakening of the abyssal flow through Samoan Passage

Voet, G., M.H. Alford, J.B. Girton, G.S. Carter, J.B. Mickett, and J.M. Klymak, "Warming and weakening of the abyssal flow through Samoan Passage," J. Phys. Oceanogr., 46, 2389–2401, doi:10.1175/JPO-D-16-0063.1, 2016.

More Info

1 Aug 2016

The abyssal flow of water through the Samoan Passage accounts for the majority of the bottom water renewal in the North Pacific, thereby making it an important element of the meridional overturning circulation. Here the authors report recent measurements of the flow of dense waters of Antarctic and North Atlantic origin through the Samoan Passage. A 15-month long moored time series of velocity and temperature of the abyssal flow was recorded between 2012 and 2013. This allows for an update of the only prior volume transport time series from the Samoan Passage from WOCE moored measurements between 1992 and 1994. While highly variable on multiple time scales, the overall pattern of the abyssal flow through the Samoan Passage was remarkably steady. The time-mean northward volume transport of about 5.4 Sv (1 Sv = 106 m3 s−1) in 2012/13 was reduced compared to 6.0 Sv measured between 1992 and 1994. This volume transport reduction is significant within 68% confidence limits (±0.4 Sv) but not at 95% confidence limits (±0.6 Sv). In agreement with recent studies of the abyssal Pacific, the bottom flow through the Samoan Passage warmed significantly on average by 1 x 10−3°C yr−1 over the past two decades, as observed both in moored and shipboard hydrographic observations. While the warming reflects the recently observed increasing role of the deep oceans for heat uptake, decreasing flow through Samoan Passage may indicate a future weakening of this trend for the abyssal North Pacific.

A tale of two spicy seas

MacKinnon, J.A., and 18 others, including J.B. Mickett and C.B. Whalen, "A tale of two spicy seas," Oceanography 29, 50–61, doi:10.5670/oceanog.2016.38, 2016.

More Info

1 Jun 2016

Upper-ocean turbulent heat fluxes in the Bay of Bengal and the Arctic Ocean drive regional monsoons and sea ice melt, respectively, important issues of societal interest. In both cases, accurate prediction of these heat transports depends on proper representation of the small-scale structure of vertical stratification, which in turn is created by a host of complex submesoscale processes. Though half a world apart and having dramatically different temperatures, there are surprising similarities between the two: both have (1) very fresh surface layers that are largely decoupled from the ocean below by a sharp halocline barrier, (2) evidence of interleaving lateral and vertical gradients that set upper-ocean stratification, and (3) vertical turbulent heat fluxes within the upper ocean that respond sensitively to these structures. However, there are clear differences in each ocean’s horizontal scales of variability, suggesting that despite similar background states, the sharpening and evolution of mesoscale gradients at convergence zones plays out quite differently. Here, we conduct a qualitative and statistical comparison of these two seas, with the goal of bringing to light fundamental underlying dynamics that will hopefully improve the accuracy of forecast models in both parts of the world.

More Publications

In The News

Ocean trash: What you need to know

KCTS9/EarthFix , Ken Christensen

Ocean currents carry man-made debris to remote corners of the planet—even to places mostly untouched by people. And that makes it difficult to clean up, as APL-UW's Senior Oceanographer John Mickett demonstrates during his recent sojourn to Vancouver Island, B.C. to recover a wayward research buoy.

11 Dec 2017

UW, NOAA deploy ocean robot to monitor harmful algal blooms off Washington coast

UW News and Information, Hannah Hickey

John Mickett, an oceanographer at the UW Applied Physics Laboratory, led the deployment of the new instrument with Stephanie Moore, a scientist at NOAA’s Northwest Fisheries Science Center, as part of a larger collaborative project.

25 May 2016

Buoy deployed in Bellingham Bay to chart health of Puget Sound

KING 5 News, Alison Morrow

Oceanographers deployed a buoy in Bellingham Bay on Thursday that will chart the health of Puget Sound. It joins a half-dozen other buoys, but this is the only one in the north Puget Sound. It is equipped with several pieces of advanced technology that will monitor everything from salinity, temperature and weather changes.

11 Feb 2016

More News Items

Acoustics Air-Sea Interaction & Remote Sensing Center for Environmental & Information Systems Center for Industrial & Medical Ultrasound Electronic & Photonic Systems Ocean Engineering Ocean Physics Polar Science Center
Close

 

Close