APL Home

Campus Map

Luc Rainville

Principal Oceanographer

Affiliate Assistant Professor, Oceanography






Dr. Rainville's research interests reside primarily in observational physical oceanography and span the wide range of spatial and temporal scales in the ocean. From large-scale circulation to internal waves to turbulence, the projects he is involved in focus on the interactions between phenomena of different scales. He is motivated to find simple and innovative ways to study the ocean, primarily through sea-going oceanography but also using with remote sensing and modeling.

In particular, Luc Rainville is interested in how phenomena typically considered 'small-scale' impact the oceanic system as a whole.

* Propagation of internal waves through eddies and fronts.
* Water mass formation and transformation by episodic forcing events.
* Mixing and internal waves in the Arctic and in the Southern Ocean.

Dr. Rainville joined the Ocean Physics Department at APL-UW at the end of 2007.

Department Affiliation

Ocean Physics


B.Sc. Physics, McGill University, 1998

Ph.D. Oceanography, Scripps Institution of Oceanography, 2004


Stratified Ocean Dynamics of the Arctic — SODA

More Info

31 Oct 2016

Vertical and lateral water properties and density structure with the Arctic Ocean are intimately related to the ocean circulation, and have profound consequences for sea ice growth and retreat as well as for prpagation of acoustic energy at all scales. Our current understanding of the dynamics governing arctic upper ocean stratification and circulation derives largely from a period when extensive ice cover modulated the oceanic response to atmospheric forcing. Recently, however, there has been significant arctic warming, accompanied by changes in the extent, thickness distribution, and properties of the arctic sea ice cover. The need to understand these changes and their impact on arctic stratification and circulation, sea ice evolution, and the acoustic environment motivate this initiative.

The Submesoscale Cascade in the South China Sea

This research program is investigating the evolution of submesoscale eddies and filaments in the Kuroshio-influenced region off the southwest coast of Taiwan.

More Info

26 Aug 2015

Science questions:
1. What role does the Kuroshio play in generating mesoscale and submesoscale variability modeled/observed off the SW coast of Taiwan?
2. How does this vary with atmospheric forcing?
3. How do these features evolve in response to wintertime (strong) atmospheric forcing?
4. What role do these dynamics play in driving water mass evolution and interior stratification in the South China Sea?
5. What role do these dynamics/features have on the transition of water masses from northern SCS water into the Kuroshio branch water/current and local flow patterns?

Salinity Processes in the Upper Ocean Regional Study — SPURS

The NASA SPURS research effort is actively addressing the essential role of the ocean in the global water cycle by measuring salinity and accumulating other data to improve our basic understanding of the ocean's water cycle and its ties to climate.

15 Apr 2015

More Projects


2000-present and while at APL-UW

Autonomous multi-platform observations during the Salinity Processes in the Upper-ocean Regional Study

Lindstrom, E.J., A.Y. Shcherbina, L. Rainville, J.T. Farrar, L.R. Centurioni, S. Dong, E.A. D’Asaro, C. Eriksen, D.M. Fratantoni, B.A. Hodges, V. Hormann, W.S. Kessler, C.M. Lee, S.C. Riser, L. St. Laurent, and D.L. Volkov, "Autonomous multi-platform observations during the Salinity Processes in the Upper-ocean Regional Study," Oceanography, 38-48, doi:, 2017.

More Info

1 Jun 2017

The Salinity Processes in the Upper-ocean Regional Study (SPURS) aims to understand the patterns and variability of sea surface salinity. In order to capture the wide range of spatial and temporal scales associated with processes controlling salinity in the upper ocean, research vessels delivered autonomous instruments to remote sites, one in the North Atlantic and one in the Eastern Pacific. Instruments sampled for one complete annual cycle at each of these two sites, which are subject to contrasting atmospheric forcing. The SPURS field programs coordinated sampling from many different platforms, using a mix of Lagrangian and Eulerian approaches. This article discusses the motivations, implementation, and first results of the SPURS-1 and SPURS-2 programs.

Multi-month dissipation estimates using microstructure from autonomous underwater gliders

Rainville, L., J.I. Gobat, C.M. Lee, and G.B. Shilling, "Multi-month dissipation estimates using microstructure from autonomous underwater gliders," Oceanography, 30, 49-50, doi:10.5670/oceanog.2017.219, 2017.

More Info

1 Jun 2017

Ocean turbulence is inherently episodic and patchy. It is the primary mechanism that transforms water mass properties and drives the exchanges of heat, freshwater, and momentum across the water column. Given its episodic nature, capturing the net impact of turbulence via direct measurements requires sustained observations over extended temporal and/or broad spatial scales.

Northern Arabian Sea Circulation-Autonomous Research (NASCar): A research initiative based on autonomous sensors

Centurioni, L.R., and 33 others, including R.R. Harcourt, C.M. Lee, L. Rainville, and A.Y. Shcherbina, "Northern Arabian Sea Circulation-Autonomous Research (NASCar): A research initiative based on autonomous sensors," Oceanography, 30, 74-87, doi:10.5670/oceanog.2017.224, 2017.

More Info

1 Jun 2017

The Arabian Sea circulation is forced by strong monsoonal winds and is characterized by vigorous seasonally reversing currents, extreme differences in sea surface salinity, localized substantial upwelling, and widespread submesoscale thermohaline structures. Its complicated sea surface temperature patterns are important for the onset and evolution of the Asian monsoon. This article describes a program that aims to elucidate the role of upper-ocean processes and atmospheric feedbacks in setting the sea surface temperature properties of the region. The wide range of spatial and temporal scales and the difficulty of accessing much of the region with ships due to piracy motivated a novel approach based on state-of-the-art autonomous ocean sensors and platforms. The extensive data set that is being collected, combined with numerical models and remote sensing data, confirms the role of planetary waves in the reversal of the Somali Current system. These data also document the fast response of the upper equatorial ocean to monsoon winds through changes in temperature and salinity and the connectivity of the surface currents across the northern Indian Ocean. New observations of thermohaline interleaving structures and mixing in setting the surface temperature properties of the northern Arabian Sea are also discussed.

More Publications


Temperature Microstructure Instrument Controller Logger

Record of Invention Number: 47906

Luc Rainville, Jason Gobat, Adam Huxtable, Geoff Shilling


6 Dec 2016

Acoustics Air-Sea Interaction & Remote Sensing Center for Environmental & Information Systems Center for Industrial & Medical Ultrasound Electronic & Photonic Systems Ocean Engineering Ocean Physics Polar Science Center