APL-UW Home

Jobs
About
Campus Map
Contact
Privacy
Intranet

Madison Smith

Research Assistant

Email

mmsmith@uw.edu

Publications

2000-present and while at APL-UW

Calibrating a viscoelastic sea ice model for wave propagation in the Arctic fall marginal ice zone

Cheng, S., W.E. Rogers, J. Thomson, M. Smith, M.J. Doble, P. Wadhams, A.L. Kohout, B. Lund, O.P.G. Persson, C.O. Collins III, S.F. Ackley, F. Montiel, and H.H. Shen, "Calibrating a viscoelastic sea ice model for wave propagation in the Arctic fall marginal ice zone," J. Geophys. Res., 122, 8770-8793, doi:10.1002/2017JC013275, 2017.

More Info

1 Nov 2017

This paper presents a wave-in-ice model calibration study. Data used were collected in the thin ice of the advancing autumn marginal ice zone of the western Arctic Ocean in 2015, where pancake ice was found to be prevalent. Multiple buoys were deployed in seven wave experiments; data from four of these experiments are used in the present study. Wave attenuation coefficients are calculated utilizing wave energy decay between two buoys measuring simultaneously within the ice covered region. Wavenumbers are measured in one of these experiments. Forcing parameters are obtained from simultaneous in-situ and remote sensing observations, as well as forecast/hindcast models. Cases from three wave experiments are used to calibrate a viscoelastic model for wave attenuation/dispersion in ice cover. The calibration is done by minimizing the difference between modeled and measured complex wavenumber, using a multi-objective genetic algorithm. The calibrated results are validated using two methods. One is to directly apply the calibrated viscoelastic parameters to one of the wave experiments not used in the calibration and then compare the attenuation from the model with measured data. The other is to use the calibrated viscoelastic model in WAVEWATCH III over the entire western Beaufort Sea and then compare the wave spectra at two remote sites not used in the calibration. Both validations show reasonable agreement between the model and the measured data. The completed viscoelastic model is believed to be applicable to the fall marginal ice zone dominated by pancake ice.

Measuring ocean waves in sea ice using SAR imagery: A quasi-deterministic approach evaluated with Sentinel-1 and in situ data

Ardhuin, F., J. Stopa, B. Chapron, F. Collard, M. Smith, J. Thomson, M. Doble, B. Blomquist, O. Persson, C.O. Collins III, and P. Wadhams, "Measuring ocean waves in sea ice using SAR imagery: A quasi-deterministic approach evaluated with Sentinel-1 and in situ data," Remote Sens. Environ., 189, 211-222, doi:10.1016/j.rse.2016.11.024, 2017.

More Info

1 Feb 2017

Highlights

• An algorithm is proposed to obtain orbital velocity maps from SAR images over sea ice.
• The algorithm is validated in terms of ocean wave spectra using in situ measurements.
• Wave height retrieval works best in the absence of unresolved short waves.

Acoustics Air-Sea Interaction & Remote Sensing Center for Environmental & Information Systems Center for Industrial & Medical Ultrasound Electronic & Photonic Systems Ocean Engineering Ocean Physics Polar Science Center
Close

 

Close