APL-UW Home

Jobs
About
Campus Map
Contact
Privacy
Intranet

Rusty Starr

Research Manager

Email

fstarr@apl.uw.edu

Phone

206-543-7875

Biosketch

Mr. Starr's early research experience started with the birth of interventional radiology at Johns Hopkins University and Medical Center. He was involved in investigations of vascular clotting materials with an emphasis on hemostasis of hemorrhaging trauma and bleeding due to vascular anomalies and disease. During these studies he helped develop the Becton Dickenson mini-detachable vascular balloon system used to block bleeding vessels and to ablate tumor vascular supply. Other areas of research involved tumor models and super selective catheterization of tumor feeding arteries for the direct delivery of chemotherapeutic agents, and drug and physiology studies utilizing radiographic imaging and vascular catheterization techniques.

Research at the UW continued along the same lines as those at Hopkins, but also expanded to include other imaging modalities such as ultrasound, magnetic resonance imaging (MRI), and computerized axial tomography (CAT). He joined the APL-UW CIMU research group in 2001 and continues hemostasis research.

Publications

2000-present and while at APL-UW

Pilot in vivo studies on transcutaneous boiling histotripsy in porcine liver and kidney

Khokhlova, T.D., G.R. Schade, Y.-N. Wang, S.V. Buravkov, V.P. Chernikov, J.C. Simon, F. Starr, A.D. Maxwell, M.R. Bailey, W. Kreider, and V.A. Khokhlova, "Pilot in vivo studies on transcutaneous boiling histotripsy in porcine liver and kidney," Sci. Rep., 9, 20176, doi:10.1038/s41598-019-56658-7, 2019.

More Info

27 Dec 2019

Boiling histotripsy (BH) is a High Intensity Focused Ultrasound (HIFU) method for precise mechanical disintegration of target tissue using millisecond-long pulses containing shocks. BH treatments with real-time ultrasound (US) guidance allowed by BH-generated bubbles were previously demonstrated ex vivo and in vivo in exposed porcine liver and small animals. Here, the feasibility of US-guided transabdominal and partially transcostal BH ablation of kidney and liver in an acute in vivo swine model was evaluated for 6 animals. BH parameters were: 1.5 MHz frequency, 5–30 pulses of 1–10 ms duration per focus, 1% duty cycle, peak acoustic powers 0.9–3.8 kW, sonication foci spaced 1–1.5 mm apart in a rectangular grid with 5–15 mm linear dimensions. In kidneys, well-demarcated volumetric BH lesions were generated without respiratory gating and renal medulla and collecting system were more resistant to BH than cortex. The treatment was accelerated 10-fold by using shorter BH pulses of larger peak power without affecting the quality of tissue fractionation. In liver, respiratory motion and aberrations from subcutaneous fat affected the treatment but increasing the peak power provided successful lesion generation. These data indicate BH is a promising technology for transabdominal and transcostal mechanical ablation of tumors in kidney and liver.

Evaluation of renal stone comminution and injury by burst wave lithotripsy in a pig model

Maxwell, A.D., Y.-N. Wang, W. Kreider, B.W. Cunitz, F. Starr, D. Lee, Y. Nazari, J.C. Williams Jr., M.R. Bailey, and M.D. Sorensen, "Evaluation of renal stone comminution and injury by burst wave lithotripsy in a pig model," J. Endourol., 33, doi:10.1089/end.2018.0886, 2019.

More Info

15 Oct 2019

Burst wave lithotripsy is an experimental technology to noninvasively fragment kidney stones with focused bursts of ultrasound (US). This study evaluated the safety and effectiveness of specific lithotripsy parameters in a porcine model of nephrolithiasis.

A 6- to 7-mm human kidney stone was surgically implanted in each kidney of three pigs. A burst wave lithotripsy US transducer with an inline US imager was coupled to the flank and the lithotripter focus was aligned with the stone. Each stone was exposed to burst wave lithotripsy at 6.5 to 7 MPa focal pressure for 30 minutes under real-time image guidance. After treatment, the kidneys were removed for gross, histologic, and MRI assessment. Stone fragments were retrieved from the kidney to determine the mass comminuted to pieces <2 mm.

On average, 87% of the stone mass was reduced to fragments <2 mm. In three of five treatments, stones were completely comminuted to <2-mm fragments. In two of five treatments, stones were partially disintegrated, but larger fragments remained. One stone was not treated because no suitable acoustic window was identified. No injury was detected through gross, histologic, or MRI examination in the parenchymal tissue, although petechial damage and surface erosion were identified on the urothelium of the collecting system limited to the area around the stone.

Burst wave lithotripsy can consistently produce stone fragments small enough to spontaneously pass by transcutaneous administration of US pulses. The data suggest that such exposures produce minimal injury to the kidney and urinary tract.

An in vivo demonstration of efficacy and acute safety of burst wave lithotripsy using a porcine model

Wang, Y.-N., W. Kreider, C. Hunter, B.W. Cunitz, J. Thiel, F. Starr, J.C. Dai, Y. Nazari, D. Lee, J.C. Williams, M.R. Bailey, and A.D. Maxwell, "An in vivo demonstration of efficacy and acute safety of burst wave lithotripsy using a porcine model," Proc. Mtgs. Acoust., 35, 02009, doi:10.1121/2.0000975, 2018.

More Info

5 Nov 2018

Proceedings, 176th Meeting of the Acoustical Society of America, 5-9 November 2018, Victoria, BC, Canada.

Burst wave lithotripsy (BWL) is a new non-invasive method for stone comminution using bursts of sub-megahertz ultrasound. A porcine model of urolithiasis and techniques to implement BWL treatment has been developed to evaluate its effectiveness and acute safety. Six human calcium oxalate monohydrate stones (6–7 mm) were hydrated, weighed, and surgically implanted into the kidneys of three pigs. Transcutaneous stone treatments were performed with a BWL transducer coupled to the skin via an external water bath. Stone targeting and treatment monitoring were performed with a co-aligned ultrasound imaging probe. Treatment exposures were applied in three 10-minute intervals for each stone. If sustained cavitation in the parenchyma was observed by ultrasound imaging feedback, treatment was paused and the pressure amplitude was decreased for the remaining time. Peak negative focal pressures between 6.5 and 7 MPa were applied for all treatments. After treatment, stone fragments were removed from the kidneys. At least 50% of each stone was reduced to <2 mm fragments. 100% of four stones were reduced to <4 mm fragments. Magnetic resonance imaging showed minimal injury to the functional renal volume. This study demonstrated that BWL could be used to effectively fragment kidney stones with minimal injury.

More Publications

Acoustics Air-Sea Interaction & Remote Sensing Center for Environmental & Information Systems Center for Industrial & Medical Ultrasound Electronic & Photonic Systems Ocean Engineering Ocean Physics Polar Science Center
Close

 

Close