APL-UW Home

Jobs
About
Campus Map
Contact
Privacy
Intranet

Jie Yang

Principal Physicist

Email

jieyang@apl.washington.edu

Phone

206-685-7617

Department Affiliation

Acoustics

Publications

2000-present and while at APL-UW

Overview of midfrequency reverberation data acquired during the Target and Reverberation Experiment 2013

Yang, J., D. Tang, B.T. Hefner, K.L. Williams, and J.R Preston, "Overview of midfrequency reverberation data acquired during the Target and Reverberation Experiment 2013," IEEE J. Oceanic Eng., EOR, doi:10.1109/JOE.2018.2802578, 2018.

More Info

16 Mar 2018

The Target and Reverberation EXperiment 2013 (TREX13) included a comprehensive reverberation field project in the frequency band of 2–10 kHz, and was carried out off the coast of Panama City, FL, USA, from April 21 to May 17, 2013. A spatially fixed transmit and receive acoustic system was used to measure reverberation over time under diverse environmental conditions, allowing study of reverberation level (RL) dependence on bottom composition, sea surface conditions, and water column properties. Extensive in situ measurements, including a multibeam bathymetric survey, chirp sonar subbottom profiling, gravity/diver cores, sediment sound speed and attenuation, interface roughness, wind-generated sea surface waves, and water column properties, were made to support studies of environmental effects on RL. Beamformed RL data are categorized to facilitate studies emphasizing physical mechanisms of 1) bottom reverberation; 2) sea surface impact; and 3) biological impact. This paper is an overview of RL over the entire sea trial, intending to summarize major observations and provide both a road map and suitable data sets for follow-up efforts on model/data comparisons. Emphasis is placed on the dependence of RL on local geoacoustic properties and sea surface conditions.

Direct measurements of sediment sound speed and attenuation in the frequency band of 2–8 kHz at the Target and Reverberation Experiment Site

Yang, J., and D. Tang, "Direct measurements of sediment sound speed and attenuation in the frequency band of 2–8 kHz at the Target and Reverberation Experiment Site," IEEE J. Ocean. Eng., 42, 1102-1109, doi:10.1109/JOE.2017.2714722, 2017.

More Info

1 Oct 2017

The sediment acoustic-speed measurement system is designed to measure in situ sediment sound speed and attenuation within the surficial 3 m of sediments in the frequency band of 2–8 kHz. Measurements were carried out during the Target and Reverberation EXperiment 2013 (TREX13) off Panama City, FL, USA. During TREX13, nine deployments at five selected sites were made along the 20-m isobath, termed the main reverberation track. The sediment types at the five selected sites ranged from coarse sand to a mixture of soft mud over sand, and the measured results show a spread of 80 m/s in sediment sound speed among the different types of sediments for all frequencies. Between 2–8 kHz, about 3% dispersion was observed at the sandy sites, whereas little dispersion was observed at the sites with mud. Preliminary attenuation results show 0.5–3.3 dB/m at the sandy sites, and 0.5–1.0 dB/m at the sites with mud in the same frequency band.

A normal mode reverberation and target echo model to interpret towed array data in the target and reverberation experiments

Ellis, D.D., J. Yang, J.R. Preston, and S. Pecknold, "A normal mode reverberation and target echo model to interpret towed array data in the target and reverberation experiments," IEEE J. Ocean. Eng., 42, 344-361, doi:10.1109/JOE.2017.2674106, 2017.

More Info

1 Apr 2017

Reverberation measurements obtained with towed arrays are a valuable tool to extract information about the ocean environment. By superimposing a polar plot of reverberation beam time series on bathymetry maps, bottom features (often uncharted) can be located. As part of Rapid Environmental Assessment exercises, Preston and Ellis used directional reverberation measurements to extract environmental information using model-data comparisons. This early work used range-independent (flat bottom) ray-based models for the model-data comparisons, while current work includes range-dependent models based on adiabatic normal modes. Here, we discuss a range-dependent shallow-water reverberation model using adiabatic normal modes that has been developed to handle bottom scattering and clutter echoes in a range-dependent environment. Beam time series similar to those measured on a horizontal line array can be produced. Comparisons can then directly be made with data, features identified, and estimates of the scattering obtained. Of particular interest will be data obtained on the triplet line array during the 2013 Target and Reverberation EXperiments in the Gulf of Mexico off Panama City, FL, USA, where interesting effects in sea bottom sand dunes were observed. Particular attention has been paid to calibration to get estimates of scattering strengths. In addition to the reverberation, a preliminary investigation of the target echo is presented.

More Publications

Acoustics Air-Sea Interaction & Remote Sensing Center for Environmental & Information Systems Center for Industrial & Medical Ultrasound Electronic & Photonic Systems Ocean Engineering Ocean Physics Polar Science Center
Close

 

Close