Campus Map

Karen Junge

Senior Oceanographer





Department Affiliation

Polar Science Center


2000-present and while at APL-UW

Physical and optical characteristics of heavily melted 'rotten' Arctic sea ice

Frantz, C.M., B. Light, S.M. Farley, S. Carpenter, R. Lieblappen, Z. Courville, M.V. Orellana, and K. Junge, "Physical and optical characteristics of heavily melted 'rotten' Arctic sea ice," Cryosphere, 13, 775-793, doi:10.5194/tc-13-775-2019, 2019.

More Info

5 Mar 2019

Field investigations of the properties of heavily melted "rotten" Arctic sea ice were carried out on shorefast and drifting ice off the coast of Utqiagvik (formerly Barrow), Alaska, during the melt season. While no formal criteria exist to qualify when ice becomes rotten, the objective of this study was to sample melting ice at the point at which its structural and optical properties are sufficiently advanced beyond the peak of the summer season. Baseline data on the physical (temperature, salinity, density, microstructure) and optical (light scattering) properties of shorefast ice were recorded in May and June 2015. In July of both 2015 and 2017, small boats were used to access drifting rotten ice within ~32 km of Utqiagvik. Measurements showed that pore space increased as ice temperature increased (–8 to 0°C), ice salinity decreased (10 to 0 ppt), and bulk density decreased (0.9 to 0.6 g cm-3). Changes in pore space were characterized with thin-section microphotography and X-ray micro-computed tomography in the laboratory. These analyses yielded changes in average brine inclusion number density (which decreased from 32 to 0.01 mm-3), mean pore size (which increased from 80 μm to 3 mm), and total porosity (increased from 0% to > 45%) and structural anisotropy (variable, with values of generally less than 0.7). Additionally, light-scattering coefficients of the ice increased from approximately 0.06 to > 0.35 cm-1 as the ice melt progressed. Together, these findings indicate that the properties of Arctic sea ice at the end of melt season are significantly distinct from those of often-studied summertime ice. If such rotten ice were to become more prevalent in a warmer Arctic with longer melt seasons, this could have implications for the exchange of fluid and heat at the ocean surface.

Diversity and potential sources of microbiota associated with snow on western portions of the Greenland Ice Sheet

Cameron, K.A., and 8 others, including K. Junge, "Diversity and potential sources of microbiota associated with snow on western portions of the Greenland Ice Sheet," Environ. Microbiol., 17, 594-609, doi:10.1111/1462-2920.12446, 2015.

More Info

1 Mar 2015

Snow overlays the majority of the Greenland Ice Sheet (GrIS). However, there is very little information available on the microbiological assemblages that are associated with this vast and climate-sensitive landscape. In this study, the structure and diversity of snow microbial assemblages from two regions of the western GrIS ice margin were investigated through the sequencing of small subunit ribosomal RNA genes. The origins of the microbiota were investigated by examining correlations to molecular data obtained from marine, soil, freshwater and atmospheric environments and geochemical analytes measured in the snow. Snow was found to contain a diverse assemblage of bacteria (Alphaproteobacteria, Betaproteobacteria and Gammaproteobacteria) and eukarya (Alveolata, Fungi, Stramenopiles and Chloroplastida). Phylotypes related to archaeal Thaumarchaeota and Euryarchaeota phyla were also identified. The snow microbial assemblages were more similar to communities characterized in soil than to those documented in marine ecosystems. Despite this, the chemical composition of snow samples was consistent with a marine contribution, and strong correlations existed between bacterial beta diversity and the concentration of Na+ and Cl. These results suggest that surface snow from western regions of Greenland contains exogenous microbiota that were likely aerosolized from more distant soil sources, transported in the atmosphere and co-precipitated with the snow.

Proteomics of Colwellia psychrerythraea at subzero temperatures — a life with limited movement, flexible membranes and vital DNA repair

Nunn, B.L., K.V. Slattery, K.A. Cameron, E. Timmins-Schiffman, and K. Junge, "Proteomics of Colwellia psychrerythraea at subzero temperatures — a life with limited movement, flexible membranes and vital DNA repair," Environ. Microbiol., 17, 2319-2335, doi:10.111/1462-2920.12691, 2015.

More Info

5 Feb 2015

The mechanisms that allow psychrophilic bacteria to remain metabolically active at subzero temperatures result from form and function of their proteins. We present first proteomic evidence of physiological changes of the marine psychrophile Colwellia psychrerythraea 34H (Cp34H) after exposure to subzero temperatures (-1, and -10°C in ice) through 8 weeks. Protein abundance was compared between different treatments to understand the effects of temperature and time, independently and jointly, within cells transitioning to, and being maintained in ice. Parallel [3H]-leucine and [3H]-thymidine incubations indicated active protein and DNA synthesis to -10°C. Mass spectrometry-based proteomics identified 1763 proteins across four experimental treatments. Proteins involved in osmolyte regulation and polymer secretion were found constitutively present across all treatments, suggesting that they are required for metabolic success below 0°C. Differentially abundant protein groups indicated a reallocation of resources from DNA binding to DNA repair and from motility to chemo-taxis and sensing. Changes to iron and nitrogen metabolism, cellular membrane structures, and protein synthesis and folding were also revealed. By elucidating vital strategies during life in ice, this study provides novel insight into the extensive molecular adaptations that occur in cold-adapted marine organisms to sustain cellular function in their habitat.

More Publications

Acoustics Air-Sea Interaction & Remote Sensing Center for Environmental & Information Systems Center for Industrial & Medical Ultrasound Electronic & Photonic Systems Ocean Engineering Ocean Physics Polar Science Center