APL-UW Home

Jobs
About
Campus Map
Contact
Privacy
Intranet

Craig Lee

Senior Principal Oceanographer

Professor, Oceanography

Email

craig@apl.washington.edu

Phone

206-685-7656

Research Interests

Upper Ocean Dynamics, Coastal Ocean Processes, Internal Waves, Fronts, Dynamics and Biological Process Interactions

Biosketch

Dr. Lee is a physical oceanographer specializing in observations and instrument development. His primary scientific interests include: (1) upper ocean dynamics, especially mesoscale and submesocale fronts and eddies, (2) interactions between biology, biogeochemistry and ocean physics and (3) high-latitude oceanography.

With partner Dr. Jason Gobat, Lee founded and leads a team of scientists and technologists that pursues a wide range of oceanographic field programs, including intensive studies of the Kuroshio Current, coupled physical–biogeochemical studies such as the recent patch-scale investigation of the North Atlantic spring phytoplankton bloom and studies aimed at quantifying and understanding Arctic change. An important component of this work involves identifying advances that could be achieved through novel measurements and developing new instruments to meet these needs.

The team's accomplishments include autonomous gliders capable of extended operation in ice-covered waters, high-performance towed vehicles and light-weight, inexpensive mooring technologies. The team also pursues K-12 educational outreach and routinely employs undergraduate research assistants. Within the community, Lee provides leadership through service on the science steering committees for several large research programs and by serving on and chairing advisory panels for U.S. Arctic efforts. Lee supports and advises masters and doctoral students and teaches graduate level courses on observations of ocean circulation and instruments, methods and experimental design.

Department Affiliation

Ocean Physics

Education

B.S. Electrical Engineering and Computer Science, University of California, Berkeley, 1987

Ph.D. Physical Oceanography, University of Washington, 1995

Projects

Stratified Ocean Dynamics of the Arctic — SODA

More Info

31 Oct 2016

Vertical and lateral water properties and density structure with the Arctic Ocean are intimately related to the ocean circulation, and have profound consequences for sea ice growth and retreat as well as for prpagation of acoustic energy at all scales. Our current understanding of the dynamics governing arctic upper ocean stratification and circulation derives largely from a period when extensive ice cover modulated the oceanic response to atmospheric forcing. Recently, however, there has been significant arctic warming, accompanied by changes in the extent, thickness distribution, and properties of the arctic sea ice cover. The need to understand these changes and their impact on arctic stratification and circulation, sea ice evolution, and the acoustic environment motivate this initiative.

The Submesoscale Cascade in the South China Sea

This research program is investigating the evolution of submesoscale eddies and filaments in the Kuroshio-influenced region off the southwest coast of Taiwan.

More Info

26 Aug 2015

Science questions:
1. What role does the Kuroshio play in generating mesoscale and submesoscale variability modeled/observed off the SW coast of Taiwan?
2. How does this vary with atmospheric forcing?
3. How do these features evolve in response to wintertime (strong) atmospheric forcing?
4. What role do these dynamics play in driving water mass evolution and interior stratification in the South China Sea?
5. What role do these dynamics/features have on the transition of water masses from northern SCS water into the Kuroshio branch water/current and local flow patterns?

Salinity Processes in the Upper Ocean Regional Study — SPURS

The NASA SPURS research effort is actively addressing the essential role of the ocean in the global water cycle by measuring salinity and accumulating other data to improve our basic understanding of the ocean's water cycle and its ties to climate.

15 Apr 2015

More Projects

Videos

Eddies Drive Particulate Carbon Deep in the Ocean During the North Atlantic Spring Bloom

The swirling eddies that create patches of stratification to hold phytoplankton near the sunlit surface during the North Atlantic spring bloom, also inject the floating organic carbon particles deep into the ocean. The finding, reported in Science, has important implications for the ocean's role in the carbon cycle on Earth: phytoplankton use carbon dioxide absorbed by the ocean from the atmosphere during the bloom and the resulting organic carbon near the sea surface is sequestered in the deep ocean.

27 Mar 2015

Seaglider: Autonomous Undersea Vehicle

APL-UW scientists continually expand Seaglider's hardware/software systems, and sensor packages. First developed for oceanographic research, it is also used by the U.S. Navy to detect and monitor marine mammals. Recently, the manufacture and marketing of Seaglider has been licensed to Kongsberg Underwater Technology, Inc., which will push the vehicle to emerging markets in offshore environmental monitoring for the oil and gas industry.

14 Aug 2013

Marginal Ice Zone (MIZ) Program

An integrated program of observations and numerical simulations will focus on understanding ice–ocean–atmosphere dynamics in and around the MIZ, with particular emphasis on quantifying changes associated with decreasing ice cover. The MIZ measurement program will employ a novel mix of autonomous technologies (ice-based instrumentation, floats, drifters, and gliders) to characterize the processes that govern Beaufort Sea MIZ evolution from initial breakup and MIZ formation though the course of the summertime sea ice retreat.

22 Mar 2013

More Videos

Publications

2000-present and while at APL-UW

Cascading off the West Greenland Shelf: A numerical perspective

Marson, J.M., P.G. Myers, X. Hu, B. Petrie, K. Azetsu-Scott, and C.M. Lee, "Cascading off the West Greenland Shelf: A numerical perspective," J. Geophys. Res., 122, 5316-5328, doi:10.1002/2017JC012801, 2017.

More Info

1 Jul 2017

Cascading of dense water from the shelf to deeper layers of the adjacent ocean basin has been observed in several locations around the world. The West Greenland Shelf (WGS), however, is a region where this process has never been documented. In this study, we use a numerical model with a 1/4° resolution to determine (i) if cascading could happen from the WGS; (ii) where and when it could take place; (iii) the forcings that induce or halt this process; and (iv) the path of the dense plume. Results show cascading happening off the WGS at Davis Strait. Dense waters form there due to brine rejection and slide down the slope during spring. Once the dense plume leaves the shelf, it gradually mixes with waters of similar density and moves northward into Baffin Bay. Our simulation showed events happening between 2003–2006 and during 2014; but no plume was observed in the simulation between 2007 and 2013. We suggest that the reason why cascading was halted in this period is related to: the increased freshwater transport from the Arctic Ocean through Fram Strait; the additional sea ice melting in the region; and the reduced presence of Irminger Water at Davis Strait during fall/early winter. Although observations at Davis Strait show that our simulation usually overestimates the seasonal range of temperature and salinity, they agree with the overall variability captured by the model. This suggests that cascades have the potential to develop on the WGS, albeit less dense than the ones estimated by the simulation.

An autonomous approach to observing the seasonal ice zone in the western Arctic

Lee, C.M., J. Thomson, and the Marginal Ice Zone and Arctic Sea State Teams, "An autonomous approach to observing the seasonal ice zone in the western Arctic," Oceanography, 30, 56-68, doi:10.5670/oceanog.2017.222, 2017.

More Info

1 Jun 2017

The Marginal Ice Zone and Arctic Sea State programs examined the processes that govern evolution of the rapidly changing seasonal ice zone in the Beaufort Sea. Autonomous platforms operating from the ice and within the water column collected measurements across the atmosphere-ice-ocean system and provided the persistence to sample continuously through the springtime retreat and autumn advance of sea ice. Autonomous platforms also allowed operational modalities that reduced the field programs’ logistical requirements. Observations indicate that thermodynamics, especially the radiative balances of the ice-albedo feedback, govern the seasonal cycle of sea ice, with the role of surface waves confined to specific events. Continuous sampling from winter into autumn also reveals the imprint of winter ice conditions and fracturing on summertime floe size distribution. These programs demonstrate effective use of integrated systems of autonomous platforms for persistent, multiscale Arctic observing. Networks of autonomous systems are well suited to capturing the vast scales of variability inherent in the Arctic system.

Autonomous instruments significantly expand ocean observing: An introduction to the special issue on autonomous and Lagrangian platforms and sensors (APLS)

Lee, C.M., T. Paluszkiewicz, D.L. Rudnick, M.M. Omand, and R.E. Todd, "Autonomous instruments significantly expand ocean observing: An introduction to the special issue on autonomous and Lagrangian platforms and sensors (APLS)," Oceanography, 30, 15-17, doi:10.5670/oceanog.2017.211, 2017.

More Info

1 Jun 2017

Oceanography relies heavily on observations to fuel new ideas and drive advances, creating a strong coupling between the science and the technological developments that enable new measurements. Novel observations, such as those that resolve new properties or scales, often lead to advances in understanding. Physical, biological, and chemical processes unfold over a broad range of scales — seconds to decades and millimeters to ocean basins — with critical interactions between scales. Observational studies work within a tradespace that balances spatial and temporal resolution, scope, and resource constraints. New platforms and sensors, along with the novel observational approaches they enable, address this challenge by providing access to an expanding range of temporal and spatial scales.

More Publications

In The News

Ice-diving drones embark on risky Antarctic mission

Scientific American, Mark Harris

To forecast sea level rise, a flotilla of undersea robots must map the unseen bottom of a melting ice shelf — if they are not sunk by it.

6 Dec 2017

Scientists get robots ready to study Antarctic ice shelves from below, with $2M boost from Paul Allen

GeekWire, Alan Boyle

Researchers from the University of Washington and Columbia University are getting ready for an unprecedented months-long campaign to study Antarctica’s ice shelves from the ocean below. Robotic Seagliders and EM-APEX profiling floats will be used to probe the ocean under ice shelves.

6 Nov 2017

Navy funds a small robot army to study the Arctic

NPR, Geoff Brumfiel

Climate change is causing the Arctic Ocean to thaw. The Navy is paying researchers to develop gliders and other gizmos, and stick them in and near the ice, because it needs to figure out how quickly the thaw is coming.

15 Feb 2015

More News Items

Inventions

Ogive Fairing, Cover Hatch, and Wing Drawings

Record of Invention Number: 4149-Reg-0009

Jason Gobat, Adam Huxtable, Craig Lee, Charles Eriksen, Jim Osse

Disclosure

25 Mar 2010

Acoustics Air-Sea Interaction & Remote Sensing Center for Environmental & Information Systems Center for Industrial & Medical Ultrasound Electronic & Photonic Systems Ocean Engineering Ocean Physics Polar Science Center
Close

 

Close