APL-UW Home

Jobs
About
Campus Map
Contact
Privacy
Intranet

Troy Tanner

Principal Software Engineer

Email

troyt@apl.uw.edu

Phone

206-685-2770

Research Interests

Interface Engineering, User-Centered Design, Web Application Development, 3D Visualization & Animation

Biosketch

Troy specializes in interface engineering, user-centered design, web applications, and digital graphics. Recent projects include the NANOOS Portal and Visualization System, Boater Information System (BIS) Portal, and the Dylan Diatom educational animation.

Troy has been with the Laboratory since 1993. He joined the professional staff in 1997.

Education

B.A., University of Washington, 1997

Publications

2000-present and while at APL-UW

The NANOOS Visualization System (NVS): Lessons learned in data aggregation, management and reuse, for a user application

Mayorga, E., T. Tanner, R. Blair, A.V. Jaramillo, N. Lederer, C.M. Risien, and C. Seaton, "The NANOOS Visualization System (NVS): Lessons learned in data aggregation, management and reuse, for a user application," In Proceedings, MTS/IEEE OCEANS 2010, Seattle, 20-23 September, doi:10.1109/OCEANS.2010.5663792 (MTS/IEEE, 2010).

More Info

20 Sep 2010

The mission of NANOOS is to coordinate and support the development, implementation, and operations of a regional coastal ocean observing system (RCOOS) for the Pacific Northwest region, as part of the U.S. IOOS. A key objective for NANOOS is to provide data and user-defined products to a diverse group of stakeholders in a timely fashion, and at spatial and temporal scales appropriate for their needs. To this end, NANOOS developed the NANOOS Visualization System (NVS), which aggregates, displays and serves meteorological and oceanographic data, derived from buoys, gliders, tide gauges, HF Radar, meteorological stations and satellites, as well as model forecast information in such a way that it presents end users with a rich, informative and user friendly experience.

First released in November 2009, NVS has already undergone several significant updates. While its original focus and continued strength is on near-real-time (NRT) observations from stationary platforms (buoys, coastal stations, etc.), it has evolved to include other types of observations as well as forecast information. NVS integrates data from a wide diversity of providers across the region, ranging from county agencies, private industry and regional partnerships, to core IOOS federal programs, and state agencies and academic groups that are principal partners in NANOOS' Data Management and Communication (DMAC) efforts. Regional and national feedback confirms that NVS has been well received by ocean observing and stakeholder communities alike.

This paper discusses, in detail, NVS 2.0, which was released in August 2010. In particular, we provide an in depth look at the database schema, metadata, data harvesting, and component communication. In addition, we discuss the NVS data management and communication approach in the context of the IOOS DMAC interoperability and standards-based efforts, highlighting the strengths and weaknesses of application-focused vs. strong-interoperability-focused approaches. Lessons learned both from technical and project management perspectives are also presented.

Lastly, we discuss future plans for NVS. Anticipated improvements include automating asset metadata discovery and processing using IOOS standard protocols, and a NANOOS implementation of ERDDAP that will support NVS by replacing multiple, data-source-specific data harvesters with more generic and easier-to-maintain NERDDAP harvesters; and by enabling customized data subsetting and download capabilities that will be accessible through the NVS user interface.

The NANOOS Visualization System: Aggregating, displaying, and serving data

Risien, C.M., J.C. Allan, R. Blair, A.V. Jaramillo, D. Jones, P.M. Kosro, D. Martin, E. Mayorga, J.A. Newton, T. Tanner, and S.A. Uczekaj, "The NANOOS Visualization System: Aggregating, displaying, and serving data," In Proceedings, MTS/IEEE Oceans, Biloxi, MS, 26-29 October (MTS/IEEE, 2009).

More Info

26 Oct 2009

The Northwest Association of Networked Ocean Observing Systems (NANOOS) is one of eleven Regional Associations of the US Integrated Ocean Observing System (IOOS). NANOOS serves the Pacific Northwest from the US/Canada border to Cape Mendocino on the northern California coast. Its mission is to coordinate and support the development, implementation, and operations of a regional coastal ocean observing system (RCOOS) for the Pacific Northwest region, as part of IOOS. A key objective for NANOOS is to provide data and user-defined products regarding the coast, estuaries and ocean to a diverse group of end users in a timely fashion, and at spatial and temporal scales appropriate for their needs.

To this end, NANOOS is developing a web mapping portal, the NANOOS Visualization System (NVS), that aggregates, displays and serves near real-time coastal, estuarine, oceanographic and meteorological data, derived from buoys, gliders, tide gauges, HF Radar, meteorological stations, satellites and shore based coastal stations, as well as model forecast information in such a way that it presents end users with a rich, informative and meaningful experience. NVS makes use of a variety of services, including the Google Maps service and a data translation and visualization service known as ERDDAP (Environmental Research Division's Data Access Program), compliant Open Geospatial Consortium (OGC) web standards such as the Sensor Observation Service (SOS), Web Map Service (WMS), and Keyhole Markup Language (KML), as well as the Open-source Project for a Network Data Access Protocol (OPeNDAP) as served and cataloged by the NANOOS THREDDS (Thematic Realtime Environmental Distributed Data Services) Data Server (TDS). These heterogeneous data streams are transformed on-the-fly to other formats or representations, which NVS makes available to the end user via a Google Maps interface.

We will describe in detail the NVS development process and will demonstrate the ability of NVS to serve as a portal for one-stop access to near real-time regional data and forecast products, including NOAA's first seven core variables (ocean currents, temperature, salinity, water level, waves, chlorophyll and surface winds), by describing the data flows from NANOOS funded coastal and ocean observing and forecasting assets as well as Federal assets. In addition, we will describe future development plans that include greater functionality, iteratively improving NVS based on feedback received at planned training workshops and from identified stakeholders, and updating NVS to be compliant with future IOOS and OGC standards.

Improved decision making with Boater Information System

Olsonbaker, J., T. Tanner, and D. Jones, "Improved decision making with Boater Information System," Proc., Georgia Basin Puget Sound Research Conference, 26-29 March, Vancouver, B.C. (2007).

26 Mar 2007

Inventions

Design Tracker

Record of Invention Number: 46444

Robert Carr, Troy Tanner, Beth Kirby, Michelle Scalley-Kim, Bob Miyamoto

Disclosure

13 Mar 2013

Acoustics Air-Sea Interaction & Remote Sensing Center for Environmental & Information Systems Center for Industrial & Medical Ultrasound Electronic & Photonic Systems Ocean Engineering Ocean Physics Polar Science Center
Close

 

Close