

Scattering from Surf Zone Waves

Experimental Results and Modeling

Patricio Catalan, Merrick Haller, Bill Plant

Associate Professor Universidad Técnica Federico Santa María Chile

Motivation

Background on this Work

- Multi Remote SENsing Surfzone Observations: MR-SENSO
- 6 weeks at Duck, NC, in 2008

U S M

Catalan

3

- Target Detection using coupled Constant False Alarm approach

U S M

Target Detection using coupled Constant False Alarm approach

JUL 2015

6

U S M

Target Detection using coupled Constant False Alarm approach

JUL 2015

7

U S M

Target Detection using coupled Constant False Alarm approach

JUL 2015

U S M

Target Detection using coupled Constant False Alarm approach

JUL 2015

9

U S M

USM Catalan

Well, how does it work?

Phase 2: Microwave Scattering

Goal:

Identify the backscattering characteristics of breaking waves

- Improve our understanding of the scattering mechanisms
- We can compare the RiverRad data for all wave stages
 - NRCS
 - Doppler Spectra
 - Doppler offset

RiverRad settings

- 9.36 GHz
- = 2 min
- 128 range bins @ 7.5 m
- 0.53 s sampling
- 31 two-minute runs were used

Enviromental conditions

Detection

JUL 2015

13

Wave by Wave NRCS Evolution: Energetic Cond.

SOMaR-3 JUL 2015

U S M

Wave by Wave NRCS Evolution: Low Energy Cond.

U S M

Ensemble Results

Environmental Dependency (or lack of)

SOMaR-3 JUL 2015

U S M

Doppler Spectra

JUL 2015

Frequency, f (Hz)

Doppler Offset

High Energy

Low Energy

Comparison with Linear Theory

Summary so far...

- Breaking waves source of large backscattered power, several dB above non breaking waves
- Maximum NRCS seems to have a limiting value
 - Weak dependency on viewing geometry (θ_{g}, φ)
 - Subtle polarization dependency
 - No discernible dependency on environmental parameters
- Large polarization ratio but not necessarily greater than 1
- Few breaking events suffice to broaden the Doppler spectrum
- Peak speeds well correlated with speed of the carrier wave

Scattering model

- Previous research assumed surface scattering e.g. Bra
- Roller has a complex structure and its morphology is (e.g. Coakley et al., 2001)
- Proposition:
 - Model based on Volumetric Scattering
 - Roller as a two-phase medium (air + water)
 - Scattering from water droplets (Mie regime)

EM model

24

- Roller is a collection of water droplets scattering in the Mie regime
 Multiple scattering interactions among particles

 Interactions using the Quasi-Crystalline Approximatic
 Allows estimation of extinction, absorption an
- Wave propagation through media using Dense Media Radiative Transfer Theory

Tsang et al., 2007

- Interactions with boundaries
- Model parameters
 - Droplet size 0.1 2 cm
 - Seawater permitivitty
 - Volume fraction (max 50 %)
 - Stickiness parameter

Results

- Thin but finite layers of droplets suffice to explain scattering levels
- Albedo shows that small volume fractions and relative small particles O(1)cm can yield large reflectivity
- Weak dependency on grazing angle
- Subtle polarization dependency.

Model summary

- Volume scattering can be relevant
- Small volume fractions suffice (upper roller layers)
- Complex formulation but requires physical parameters only
 - Can we measure a droplet distribution to validate this?
- Model output shows good agreement with measured data
 - Median NRCS
 - Grazing angle dependency
 - Small polarization ratios
 - Roller travels with the wave at its phase speed.

