On the imaging of rip currents at X-band

Rebecca Kloster Merrick Haller and David Lyzenga Coastal & Ocean Engineering Oregon State University

1) Rip current observations via marine radar

- 2) Rip current model
- 3) Implications for X-band scattering
- 4) Summary

Observations – Duck, NC

Raw image sequence (0.75Hz)

60 sec mean image (0.75 Hz)

South Jetty, Newport, Oregon

Observation Stations

Data Assimilation and Remote-sensing for Littoral Applications (DARLA - MURI #N00014-10-1-0932)

<u>Tidal flows – New River Inlet, NC</u>

Ebb Jets

<u>Tidal flows – New River Inlet, NC</u>

Ebb Jet-lets

<u>Rip currents – summary results</u>

- Rip currents were persistent during low tides and extended several surf zone widths offshore
- Rip current obliquity was primarily driven by alongshore wind stress
- Rip current imaging is dependent on cross-shore wind stress

Haller et al., "Rip current observations via marine radar", Invited Technical Paper: J. Waterway, Port, Coastal, and Ocean Engineering, 140(2), 115-124, 2014.

Effect of cross-shore wind stress

How are rip currents imaged?

How are rip currents imaged?

Lagrangian Coherent Structures

Reniers et al., "Rip-current pulses tied to Lagrangian coherent structures", *GRL*, Vol. 37, 2010

Effect of current divergence and strain on surface roughness

Conservation of wave action:

$$\frac{\partial N}{\partial t} = k_j \frac{\partial u_j}{\partial x_i} \frac{\partial N}{\partial k_i} + \frac{S}{\omega}$$

Relaxation approach:

 $N = N_0(k) + \widetilde{N}(x, k, t)$

Action anomaly due to currents:

$$\widetilde{N}(x,k) = \tau_c k_j \frac{\partial u_j}{\partial x_i} \frac{\partial N_0}{\partial k_i}$$

Rascle et al., "Surface roughness imaging of currents shows divergence and strain in the wind direction", *J. Phys. Oceanogr.*, August, 2014.

Effect of current divergence and strain on surface roughness

$$D = \frac{\partial u}{\partial x} + \frac{\partial v}{\partial y}, \qquad S_t = \frac{\partial u}{\partial x} - \frac{\partial v}{\partial y}$$
$$V = \frac{\partial v}{\partial x} - \frac{\partial u}{\partial y}, \qquad S_h = \frac{\partial v}{\partial x} + \frac{\partial u}{\partial y}$$

 $\widetilde{N}(x,k,\varphi) = \frac{\tau_c N_0}{2} \left\{ Dm_k - Vm_\varphi + S_t \left[\cos(2\varphi) m_k - \sin(2\varphi) m_\varphi \right] + S_h \left[\sin(2\varphi) m_k + \cos(2\varphi) m_\varphi \right] \right\}$

Rascle et al., "Surface roughness imaging of currents shows divergence and strain in the wind direction", *J. Phys. Oceanogr.*, August, 2014.

Effect of current divergence and strain on surface roughness

- Mean squared slope response to vorticity is zero
- Mean squared slope response to shear is zero
- Mean squared slope response to divergence & strain is nonzero

Rip current model

Cross-shore

 $\partial u/\partial x - \partial v/\partial y$

Cross-shore Oregon State University

Alongshore

Rip current deformation tensors

$\frac{\overline{\text{Divergence}}}{\partial u/\partial x + \partial v/\partial y}$

$\frac{\text{Vorticity}}{\partial v / \partial x - \partial u / \partial y}$

Hill's Vortex deformation tensors

<u>Rip + Vortex pair deformation tensors</u>

Conservation of wave action (more complete):

$$\frac{\partial N}{\partial t} + (Cg_x + u)\frac{\partial N}{\partial x} + (Cg_y + v) \quad \frac{\partial N}{\partial y} - (k_x\frac{\partial u}{\partial x} + k_y\frac{\partial v}{\partial x})\frac{\partial N}{\partial kx}$$

2

0

1 log₁₀(k) (rad/m)

 $-(k_x \frac{\partial x}{\partial y} + k_y \frac{\partial y}{\partial y}) \frac{\partial x}{\partial k_y} = F_s(N)$

Curvature spectrum for Hill's vortex

Rip current remote sensing

