APL-UW Home

Jobs
About
Campus Map
Contact
Privacy
Intranet

Axel Schweiger

Senior Principal Scientist

Email

axel@apl.washington.edu

Phone

206-543-1312

Research Interests

Remote Sensing, Arctic Climatology, Systems Management

Biosketch

Dr. Schweiger's research focuses on sea ice, clouds, and radiation in the Arctic. He is using satellite data, models, and in-situ observations to improve our understanding of sea ice and cloud variability. He has developed the PSC Arctic Ice Volume Page, which provides monthly updated total Arctic Ice Volume estimates based on the PIOMAS model. He has worked on the validation, improvements, and applications of PIOMAS to a variety of problems.

He is a an investigator in the Seasonal Ice Zone Reconnaissance Survey Project (SIZRS) that utilizes US-Coast Guard Arctic Domain Awareness flights make Atmospheric and Oceanographic measurements of the seasonal ice zone of the Beaufort Sea and targets the improved understanding of the changes in the Arctic system as sea ice retreats.

He has worked on algorithm development for the retrieval of clouds and atmospheric profiles and generated the the TOVS Polar Pathfinder data set, a 20-year data set of polar temperature, humidity profiles and cloud information. Previous research includes work on microwave-based sea ice concentration algorithms and the application of artificial intelligence methods to remote sensing problems. Dr. Schweiger has been with the Polar Science Center since 1992.

Department Affiliation

Polar Science Center

Education

B.A. Geography & English, Universitat Erlangen, 1984

M.S. Geography, University of Colorado, Boulder, 1987

Ph.D. Geography, University of Colorado, Boulder, 1992

Projects

Arctic Surface Air Temperatures for the Past 100 Years

Accurate fields of Arctic surface air temperature (SAT) are needed for climate studies, but a robust gridded data set of SAT of sufficient length is not available over the entire Arctic. We plan to produce authoritative SAT data sets covering the Arctic Ocean from 1901 to present, which will be used to better understand Arctic climate change.

 

The Fate of Summertime Arctic Ocean Heating: A Study of Ice-Albedo Feedback on Seasonal to Interannual Time Scales

The main objective of this study is to determine the fate of solar energy absorbed by the arctic seas during summer, with a specific focus on its impact on the sea ice pack. Investigators further seek to understand the fate of this heat during the winter and even beyond to the following summer. Their approach is use a coupled sea ice–ocean model forced by atmospheric reanalysis fields, with and without assimilation of satellite-derived ice and ocean variables. They are also using satellite-derived ocean color data to help determine light absorption in the upper ocean.

 

Videos

Arctic Sea Ice Extent and Volume Follow Long-term Trend

In mid-September Arctic sea ice reached its minimum extent and volume. There are annual fluctuations — 2012 was a record low for both measures — but reports of a recent 'rebound' are short-sighted. Axel Schweiger, Chair of the APL-UW Polar Science Center, shows that the downward long-term trend is clear.

6 Nov 2015

Arctic Sea Ice Extent and Volume Dip to New Lows

By mid-September, the sea ice extent in the Arctic reached the lowest level recorded since 1979 when satellite mapping began.

More Info

15 Oct 2012

APL-UW polar oceanographers and climatologists are probing the complex ice–ocean–atmosphere system through in situ and remote sensing observations and numerical model simulations to learn how and why.

Focus on Arctic Sea Ice: Current and Future States of a Diminished Sea Ice Cover

APL-UW polar scientists are featured in the March edition of the UW TV news magazine UW|360, where they discuss their research on the current and future states of a diminished sea ice cover in the Arctic.

More Info

7 Mar 2012

The dramatic melting of Arctic sea ice over the past several summers has generated great interest and concern in the scientific community and among the public. Here, APL-UW polar scientists present their research on the current state of Arctic sea ice. A long-term, downward trend in sea ice volume is clear.

They also describe how the many observations they gather are used to improve computer simulations of global climate that, in turn, help us to asses the impacts of a future state of diminished sea ice cover in the Arctic.

This movie presentation was first seen on the March 2012 edition of UW|360, the monthly University of Washington Television news magazine.

Publications

2000-present and while at APL-UW

ICESat-2 shows sea ice leads have little overall effects on the Arctic cloudiness in cold months

Liu, Z., and A. Schweiger, "ICESat-2 shows sea ice leads have little overall effects on the Arctic cloudiness in cold months," J. Clim., EOR, doi:10.1175/JCLI-D-23-0285.1, 2024.

More Info

23 Apr 2024

The effect of leads in Arctic sea ice on clouds is a potentially important climate feedback. We use observations of clouds and leads from the Ice, Cloud, and Land Elevation Satellite-2 (ICESat-2) to study the effects of leads on clouds. Both leads and clouds are strongly forced by synoptic weather conditions, with more clouds over both leads and sea ice at lower sea level pressure. Contrary to previous studies, we find the overall lead effect on low-level cloud cover is –0.02, a weak cloud dissipating effect in cold months, after the synoptic forcing influence is removed. This is due to compensating contributions from the cloud dissipating effect by newly frozen leads under high pressure systems and the cloud enhancing effect by newly open leads under low pressure system. The lack of proper representation of lead effect on clouds in current climate models and reanalyses may impact their performance in winter months, such as in sea ice growth and Arctic cyclone development.

Predicting September Arctic sea ice: A multi-modal seasonal skill comparison

Bushuk, M., and 60 others including A. Schweiger, M. Steele, and J. Zhang, "Predicting September Arctic sea ice: A multi-modal seasonal skill comparison," Bull. Am. Meteorol. Soc., EOR, doi:10.1175/BAMS-D-23-0163.1, 2024.

More Info

22 Apr 2024

This study quantifies the state-of-the-art in the rapidly growing field of seasonal Arctic sea ice prediction. A novel multi-model dataset of retrospective seasonal predictions of September Arctic sea ice is created and analyzed, consisting of community contributions from 17 statistical models and 17 dynamical models. Prediction skill is compared over the period 2001–2020 for predictions of Pan-Arctic sea ice extent (SIE), regional SIE, and local sea ice concentration (SIC) initialized on June 1, July 1, August 1, and September 1. This diverse set of statistical and dynamical models can individually predict linearly detrended Pan-Arctic SIE anomalies with skill, and a multi-model median prediction has correlation coefficients of 0.79, 0.86, 0.92, and 0.99 at these respective initialization times. Regional SIE predictions have similar skill to Pan-Arctic predictions in the Alaskan and Siberian regions, whereas regional skill is lower in the Canadian, Atlantic, and Central Arctic sectors. The skill of dynamical and statistical models is generally comparable for Pan-Arctic SIE, whereas dynamical models outperform their statistical counterparts for regional and local predictions. The prediction systems are found to provide the most value added relative to basic reference forecasts in the extreme SIE years of 1996, 2007, and 2012. SIE prediction errors do not show clear trends over time, suggesting that there has been minimal change in inherent sea ice predictability over the satellite era. Overall, this study demonstrates that there are bright prospects for skillful operational predictions of September sea ice at least three months in advance.

Heat stored in the Earth system 1960–2020: Where does the energy go?

von Schuckmann, K., and many others including A. Schweiger, "Heat stored in the Earth system 1960–2020: Where does the energy go?" Earth Syst. Sci. Data, 15, 1675-1709, doi:10.5194/essd-15-1675-2023, 2023.

More Info

17 Apr 2023

The Earth climate system is out of energy balance, and heat has accumulated continuously over the past decades, warming the ocean, the land, the cryosphere, and the atmosphere. According to the Sixth Assessment Report by Working Group I of the Intergovernmental Panel on Climate Change, this planetary warming over multiple decades is human-driven and results in unprecedented and committed changes to the Earth system, with adverse impacts for ecosystems and human systems. The Earth heat inventory provides a measure of the Earth energy imbalance (EEI) and allows for quantifying how much heat has accumulated in the Earth system, as well as where the heat is stored. Here we show that the Earth system has continued to accumulate heat, with 381±61 ZJ accumulated from 1971 to 2020. This is equivalent to a heating rate (i.e., the EEI) of 0.48±0.1 W m-2. The majority, about 89 %, of this heat is stored in the ocean, followed by about 6 % on land, 1 % in the atmosphere, and about 4 % available for melting the cryosphere. Over the most recent period (2006–2020), the EEI amounts to 0.76±0.2 W m-2. The Earth energy imbalance is the most fundamental global climate indicator that the scientific community and the public can use as the measure of how well the world is doing in the task of bringing anthropogenic climate change under control. Moreover, this indicator is highly complementary to other established ones like global mean surface temperature as it represents a robust measure of the rate of climate change and its future commitment. We call for an implementation of the Earth energy imbalance into the Paris Agreement's Global Stocktake based on best available science. The Earth heat inventory in this study, updated from von Schuckmann et al. (2020), is underpinned by worldwide multidisciplinary collaboration and demonstrates the critical importance of concerted international efforts for climate change monitoring and community-based recommendations and we also call for urgently needed actions for enabling continuity, archiving, rescuing, and calibrating efforts to assure improved and long-term monitoring capacity of the global climate observing system. The data for the Earth heat inventory are publicly available, and more details are provided in Table 4.

More Publications

In The News

Fact check: NASA did not deny warming or say polar ice has increased since 1979

USA Today, Kate Petersen

NASA researchers have documented the loss of trillions of tons of ice from Earth's poles due to human-driven climate change. Citing published reports from the Polar Science Center and other sources, popular social media memes claiming an increase in polar ice since 1979 are swatted down.

21 Jan 2022

Arctic's 'last ice area' may be less resistant to global warming

The New York Times, Henry Fountain

The region, which could provide a last refuge for polar bears and other Arctic wildlife that depends on ice, is not as stable as previously thought, according to a new study.

1 Jul 2021

Arctic's 'last ice area' shows earlier-than-expected melt

Associated Press, Seth Borenstein

Part of the Arctic is nicknamed the 'Last Ice Area,' because floating sea ice there is usually so thick that it’s likely to withstand global warming for decades. So, scientists were shocked last summer when there was suddenly enough open water for a ship to pass through.

1 Jul 2021

More News Items

Acoustics Air-Sea Interaction & Remote Sensing Center for Environmental & Information Systems Center for Industrial & Medical Ultrasound Electronic & Photonic Systems Ocean Engineering Ocean Physics Polar Science Center
Close

 

Close