Andrey Shcherbina Principal Oceanographer Affiliate Assistant Professor, Civil and Environmental Engineering ashcherbina@apl.washington.edu Phone 206-897-1446 |
Education
M.S. Physical Oceanography, Moscow Institute of Physics and Technology, 1998
Ph.D. Physical Oceanography, Scripps Institution of Oceanography, 2004
Projects
Salinity Processes in the Upper Ocean Regional Study SPURS The NASA SPURS research effort is actively addressing the essential role of the ocean in the global water cycle by measuring salinity and accumulating other data to improve our basic understanding of the ocean's water cycle and its ties to climate. |
15 Apr 2015
|
Lateral Mixing Small scale eddies and internal waves in the ocean mix water masses laterally, as well as vertically. This multi-investigator project aims to study the physics of this mixing by combining dye dispersion studies with detailed measurements of the velocity, temperature and salinity field during field experiments in 2011 and 2012. |
1 Sep 2012
|
APL-UW Involvement in the Coastal Margin Observation and Prediction Science and Technology Center (CMOP) AUVs will be deployed by a newly formed APL-UW AUV group as part of CMOP's experimental observation network which consists of multiple fixed and mobile platforms equipped with oceanographic sensors. |
More Info |
15 Jun 2012
|
|||||||
The Center for Coastal Margin Observation and Predication (CMOP) has purchased from Hydroid, LLC two Autonomous Underwater Vehicles (AUVs) for its studies. The REMUS (Remote Environmental Measuring Units) 100 (see Figure 1) is a compact, light-weight, AUV designed for operation in coastal environments up to 100 meters in depth. The AUVs will be deployed by a newly formed APL-UW AUV group as part of CMOP's experimental observation network which consists of multiple fixed and mobile platforms equipped with oceanographic sensors. The AUVs will be used, primarily, to study the Columbia River plume and estuary region. The AUVs will be deployed periodically throughout each operational year. We also plan to allow customization of the AUVs by integrating novel biogeochemical sensors to meet specific scientific objectives for the CMOP program. |
Videos
Lagrangian Submesoscale Experiment LASER A science team led by Eric D'Asaro conducted a unique mission to deploy over 1,000 ocean drifters in a small area of the Gulf of Mexico. The real-time data collected from the biodegradable drifters recalibrated understanding of ocean currents. |
22 Jan 2018
|
Publications |
2000-present and while at APL-UW |
Observations of elevated mixing and periodic structures within diurnal warm layers Zeiden, K., J. Thomson, A. Shcherbina, and E. D'Asaro, "Observations of elevated mixing and periodic structures within diurnal warm layers," J. Geophys. Res., 129, doi:10.1029/2024JC021399, 2024. |
More Info |
9 Nov 2024 |
|||||||
Surface drifters (SWIFTs) equipped with down-looking high-resolution acoustic doppler current profilers (ADCPs) were used to estimate the turbulent kinetic energy (TKE) dissipation rate (ε) within highly stratified diurnal warm layers (DWLs) in the Southern California Bight. Over a 10-day period, five instances of DWLs were observed with strong surface temperature anomalies up to 3°C and velocity anomalies up to 0.3 m s-1. Profiles of ε in the upper 5 m suggest turbulence is strongly modulated by the DWL stratification. Burst-averaged (8.5 min) ε is stronger than predicted by law-of-the-wall boundary layer scaling within the DWLs and suppressed below. Predictions for ε within the DWLs are improved by a shear-production scaling using observed shear and linearly decaying turbulent stress. However, ε is still under-predicted. Examination of the un-averaged acoustic backscatter data suggests elevated ε is related to the presence of turbulent structures in the DWLs which span the layer height and strongly modulate TKE. Evolution in the bulk Richardson number each day suggests the DWLs become unstable to layer-scale overturning and entrainment each afternoon, thus the turbulent structures may result from shear-driven instability. This interpretation is supported by a conditional average of the data during a burst characterized by strongly periodic structures. The structures resemble high-frequency internal waves with strong asymmetry in the along-flow direction (steepening) which suggests they are unstable. Coincident asymmetric patterns in upwelling/downwelling and corresponding regions of strong vertical convergence/divergence suggest that both vertical transport and local TKE generation are plausible sources of elevated ε in the DWLs. |
Observations of elevated mixing and periodic structures within diurnal warm layers Zeiden, K., J. Thomson, A. Shcherbina, and E. D'Asaro, "Observations of elevated mixing and periodic structures within diurnal warm layers," J. Geophys. Res., 129, doi:10.1029/2024JC021399, 2024. |
More Info |
9 Nov 2024 |
|||||||
Surface drifters (SWIFTs) equipped with down-looking high-resolution acoustic doppler current profilers (ADCPs) were used to estimate the turbulent kinetic energy (TKE) dissipation rate |
Rapid downwelling of tracer particles across the boundary layer and into the pycnocline at submesoscale ocean fronts Pham, H.T., V. Verma, S. Sarkar, A.Y. Shcherbina, and E.A. D'Asaro, "Rapid downwelling of tracer particles across the boundary layer and into the pycnocline at submesoscale ocean fronts," Geophys. Res. Lett., 51, doi:10.1029/2024GL109674, 2024. |
More Info |
16 Sep 2024 |
|||||||
A neutrally buoyant float deployed in an atmospherically driven turbulent ocean boundary layer on the dense side of a submesoscale front was repeatedly carried across the boundary layer by the turbulence and then trapped beneath the slumping front. Lagrangian particles in a large-eddy simulation of a similar baroclinically unstable front forced by surface cooling move along convergent surface filaments toward filament junctions. They are also caught by convective plumes that downwell them at speeds similar to those of the float. Subsequently, some are trapped in the pycnocline by frontal slumping due to ageostrophic secondary frontal circulations. In both observations and simulations, boundary layer turbulence and frontal circulations work together to trap and subduct particles from the mixed layer. The small-scale boundary layer motions move them vertically within the boundary layer and larger, submesoscale frontal circulations move them laterally out of the boundary layer and under the slumping fronts. |
In The News
The Great Pacific Garbage Patch is becoming a plastic haven for some marine life Wired, Nadine Kahil The huge island made of plastic waste is creating new ecosystems but threatens open-ocean species. |
28 Nov 2023
|
Untangling the ocean trash glut, one 'ghost net' at a time Christian Science Monitor, Doug Struck APL-UW oceanographer Andrey Shcherbina, who studies ocean circulation patterns, hitched a ride on a ship of opportunity to deploy sensors in the Pacific garbage patch. |
19 Jun 2020
|
Temporary 'bathtub drains' in the ocean concentrate flotsam UW News, Hannah Hickey An experiment featuring the largest flotilla of sensors ever deployed in a single area provides new insights into how marine debris, or flotsam, moves on the surface of the ocean. |
18 Jan 2018
|