APL-UW Home

Jobs
About
Campus Map
Contact
Privacy
Intranet

Benjamin Smith

Principal Physicist

Affiliate Associate Professor, Earth and Space Sciences

Email

bsmith@apl.washington.edu

Phone

206-616-9176

Department Affiliation

Polar Science Center

Education

B.S. Physics, University of Chicago, 1997

M.S. Geology & Geophysics, University of Wisconsin - Madison, 1999

Ph.D. Earth & Space Sciences/Geophysics, University of Washington - Seattle, 2005

Publications

2000-present and while at APL-UW

Mass balance of the Greenland and Antarctic ice sheets from 1992 to 2020

Otosaka, I.N., and 67 others including I. Joughin, M.D. King, B.E. Smith, and T.C. Sutterley, "Mass balance of the Greenland and Antarctic ice sheets from 1992 to 2020," Earth Syst. Sci. Data, 15, 1297-1616, doi:10.5194/essd-15-1597-2023, 2023.

More Info

20 Apr 2023

Ice losses from the Greenland and Antarctic ice sheets have accelerated since the 1990s, accounting for a significant increase in the global mean sea level. Here, we present a new 29-year record of ice sheet mass balance from 1992 to 2020 from the Ice Sheet Mass Balance Inter-comparison Exercise (IMBIE). We compare and combine 50 independent estimates of ice sheet mass balance derived from satellite observations of temporal changes in ice sheet flow, in ice sheet volume, and in Earth's gravity field. Between 1992 and 2020, the ice sheets contributed 21.0±1.9 mm to global mean sea level, with the rate of mass loss rising from 105 Gt yr−1 between 1992 and 1996 to 372 Gt yr−1 between 2016 and 2020. In Greenland, the rate of mass loss is 169±9 Gt yr−1 between 1992 and 2020, but there are large inter-annual variations in mass balance, with mass loss ranging from 86 Gt yr−1 in 2017 to 444 Gt yr−1 in 2019 due to large variability in surface mass balance. In Antarctica, ice losses continue to be dominated by mass loss from West Antarctica (82±9 Gt yr−1) and, to a lesser extent, from the Antarctic Peninsula (13±5 Gt yr−1). East Antarctica remains close to a state of balance, with a small gain of 3±15 Gt yr−1, but is the most uncertain component of Antarctica's mass balance.

Evaluating Greenland surface-mass-balance and firn-densification data using ICESat-2 altimetry

Smith, B.E., B. Medley, X. Fettweis, T. Sutterley, P. Alexander, D. Porter, and M. Tedesco, "Evaluating Greenland surface-mass-balance and firn-densification data using ICESat-2 altimetry," Cryosphere, 17, 789-808, doi:10.5194/tc-17-789-2023, 2023.

More Info

16 Feb 2023

Surface-mass-balance (SMB) and firn-densification (FD) models are widely used in altimetry studies as a tool to separate atmospheric-driven from ice-dynamics-driven ice-sheet mass changes and to partition observed volume changes into ice-mass changes and firn-air-content changes. Until now, SMB models have been principally validated based on comparison with ice core and weather station data or comparison with widely separated flight radar-survey flight lines. Firn-densification models have been primarily validated based on their ability to match net densification over decades, as recorded in firn cores, and the short-term time-dependent component of densification has rarely been evaluated at all. The advent of systematic ice-sheet-wide repeated ice-surface-height measurements from ICESat-2 (the Ice Cloud, and land Elevation Satellite, 2) allows us to measure the net surface-height change of the Greenland ice sheet at quarterly resolution and compare the measured surface-height differences directly with those predicted by three FD–SMB models: MARv3.5.11 and GSFCv1.1 and GSFCv1.2. By segregating the data by season and elevation, and based on the timing and magnitude of modelled processes in areas where we expect minimal ice-dynamics-driven height changes, we investigate the models' accuracy in predicting atmospherically driven height changes. We find that while all three models do well in predicting the large seasonal changes in the low-elevation parts of the ice sheet where melt rates are highest, two of the models (MARv3.5.11 and GSFCv1.1) systematically overpredict, by around a factor of 2, the magnitude of height changes in the high-elevation parts of the ice sheet, particularly those associated with melt events. This overprediction seems to be associated with the melt sensitivity of the models in the high-elevation part of the ice sheet. The third model, GSFCv1.2, which has an updated high-elevation melt parameterization, avoids this overprediction.

Simulations of firn processes over the Greenland and Antarctic ice sheets: 1980–2021

Medley, B., T.A. Neumann, H.J. Zwally, B.E. Smith, and C.M. Stevens, "Simulations of firn processes over the Greenland and Antarctic ice sheets: 1980–2021," Cryosphere, 16, 3971-4011, doi:10.5194/tc-16-3971-2022, 2022.

More Info

6 Oct 2022

Conversion of altimetry-derived ice-sheet volume change to mass requires an understanding of the evolution of the combined ice and air content within the firn column. In the absence of suitable techniques to observe the changes to the firn column across the entirety of an ice sheet, the firn column processes are typically modeled. Here, we present new simulations of firn processes over the Greenland and Antarctic ice sheets (GrIS and AIS) using the Community Firn Model and atmospheric reanalysis variables for more than four decades. A data set of more than 250 measured depth–density profiles from both ice sheets provides the basis of the calibration of the dry-snow densification scheme. The resulting scheme results in a reduction in the rate of densification, relative to a commonly used semi-empirical model, through a decreased dependence on the accumulation rate, a proxy for overburden stress. The 1980–2020 modeled firn column runoff, when combined with atmospheric variables from MERRA-2, generates realistic mean integrated surface mass balance values for the Greenland (+390 Gt yr-1) and Antarctic (+2612 Gt yr-1) ice sheets when compared to published model-ensemble means. We find that seasonal volume changes associated with firn air content are on average approximately 2.5 times larger than those associated with mass fluxes from surface processes for the AIS and 1.5 times larger for the GrIS; however, when averaged over multiple years, ice and air-volume fluctuations within the firn column are of comparable magnitudes. Between 1996 and 2019, the Greenland Ice Sheet lost nearly 5% of its firn air content, indicating a reduction in the total meltwater retention capability. Nearly all (94%) of the meltwater produced over the Antarctic Ice Sheet is retained within the firn column through infiltration and refreezing.

More Publications

In The News

How ants inspired a new way to measure snow with space lasers

Wired, Matt Simon

Glaciologist Ben Smith comments on a clever new technique to measure fluffy snow on the Earth's surface with the orbiting ICESat-2 lidar instrument.

31 May 2022

Edge of Pine Island Glacier’s ice shelf is ripping apart, causing key Antarctic glacier to gain speed

UW News, Hannah Hickey

For decades, the ice shelf helping to hold back one of the fastest-moving glaciers in Antarctica has gradually thinned. Analysis of satellite images reveals a more dramatic process in recent years: From 2017 to 2020, large icebergs at the ice shelf’s edge broke off, and the glacier sped up.

11 Jun 2021

Shrinking ice sheets lifted global sea level 14 millimeters

Eos (American Geophysical Union), Tim Hornyak

Researchers measure both grounded and floating ice sheets using satellite data spanning a 16-year period.

15 May 2020

More News Items

Acoustics Air-Sea Interaction & Remote Sensing Center for Environmental & Information Systems Center for Industrial & Medical Ultrasound Electronic & Photonic Systems Ocean Engineering Ocean Physics Polar Science Center
Close

 

Close