Campus Map

Yak-Nam Wang

Research Scientist Engineer - Principal






B.S. Biomedical Materials Science & Engineering, Queen Mary & Westfield College, University of London, UK, 1996

Ph.D. Biomedical Materials, Queen Mary & Westfield College, University of London, UK, 2000


Mechanical Tissue Ablation with Focused Ultrasound

An experimental noninvasive surgery method uses nonlinear ultrasound pulses to liquefy tissue at remote target sites within a small focal region without damaging intervening tissues. A multi-institution, international team led by CIMU researchers is applying the method to the focal treatment of prostate tumors.

More Info

19 Mar 2020

Boiling histotripsy utilizes sequences of millisecond-duration HIFU pulses with high-amplitude shocks that form at the focus by nonlinear propagation effects. Due to strong attenuation of the ultrasound energy at the shocks, these nonlinear waves rapidly heat tissue and generate millimeter-sized boiling bubbles at the focus within each pulse. Then the further interaction of subsequent shocks with the vapor cavity causes tissue disintegration into subcellular debris through the acoustic atomization mechanism.

The method was proposed at APL-UW in collaboration with Moscow State University (Russia) and now is being evaluated for various clinical applications. It has particular promise because of its important clinical advantages: the treatment of tissue volumes can be accelerated while sparing adjacent structures and not injuring intervening tissues; it generates precisely controlled mechanical lesions with sharp margins; the method can be implemented in existing clinical systems; and it can be used with real-time ultrasound imaging for targeting, guidance, and evaluation of outcomes. In addition, compared to thermal ablation, BH may lead to faster resorption of the liquefied lesion contents.

Non-invasive Treatment of Abscesses with Ultrasound

Abscesses are walled-off collections of fluid and bacteria within the body. They are common complications of surgery, trauma, and systemic infections. Typical treatment is the surgical placement of a drainage catheter to drain the abscess fluid over several days. Dr. Keith Chan and researchers at APL-UW's Center for Industrial + Medical Ultrasound are exploring how to treat abscesses non-invasively, that is, from outside the body, with high-intensity focused ultrasound (HIFU). This experimental therapy could reduce pain, radiation exposure, antibiotic use, and costs for patients with abscesses. Therapeutic ultrasound could also treat abscesses too small or inaccessible for conventional drainage.

20 Jun 2016


2000-present and while at APL-UW

Development of a burst wave lithotripsy system for noninvasive fragmentation of ureteroliths in pet cats

Maxwell, A.D., G.W. Kim, E. Furrow, J.P. Lulich, M. Torre, B. MacConaghy, E. Lynch, D.F. Lotta, Y.-N. Wang, M.S. Borofsky, and M.R. Bailey, "Development of a burst wave lithotripsy system for noninvasive fragmentation of ureteroliths in pet cats," BMC Vet. Res., 141, doi:10.1186/s12917-023-03705-1, 2023.

More Info

2 Sep 2023

Upper urinary tract stones are increasingly prevalent in pet cats and are difficult to manage. Surgical procedures to address obstructing ureteroliths have short- and long-term complications, and medical therapies (e.g., fluid diuresis and smooth muscle relaxants) are infrequently effective. Burst wave lithotripsy is a non-invasive, ultrasound-guided, handheld focused ultrasound technology to disintegrate urinary stones, which is now undergoing human clinical trials in awake unanesthetized subjects.

In this study, we designed and performed in vitro testing of a modified burst wave lithotripsy system to noninvasively fragment stones in cats. The design accounted for differences in anatomic scale, acoustic window, skin-to-stone depth, and stone size. Prototypes were fabricated and tested in a benchtop model using 35 natural calcium oxalate monohydrate stones from cats. In an initial experiment, burst wave lithotripsy was performed using peak ultrasound pressures of 7.3 (n = 10), 8.0 (n = 5), or 8.9 MPa (n = 10) for up to 30 min. Fourteen of 25 stones fragmented to < 1 mm within the 30 min. In a second experiment, burst wave lithotripsy was performed using a second transducer and peak ultrasound pressure of 8.0 MPa (n = 10) for up to 50 min. In the second experiment, 9 of 10 stones fragmented to < 1 mm within the 50 min. Across both experiments, an average of 73–97% of stone mass could be reduced to fragments < 1 mm. A third experiment found negligible injury with in vivo exposure of kidneys and ureters in a porcine animal model.

These data support further evaluation of burst wave lithotripsy as a noninvasive intervention for obstructing ureteroliths in cats.

Pilot ex vivo study on non-thermal ablation of human prostate adenocarcinoma tissue using boiling histotripsy

Rosnitskiy, P.B., and 16 others including O.A. Sapozhnikov, A.D. Maxwell, Y.-N. Wang, and V.A. Khokhlova, "Pilot ex vivo study on non-thermal ablation of human prostate adenocarcinoma tissue using boiling histotripsy," Ultrasonics, 133, doi:10.1016/j.ultras.2023.107029, 2023.

More Info

1 Aug 2023

Focused ultrasound technologies are of growing interest for noninvasive ablation of localized prostate cancer (PCa). Here we present the results of the first case study evaluating the feasibility of non-thermal mechanical ablation of human prostate adenocarcinoma tissue using the boiling histotripsy (BH) method on ex vivo tissue. High intensity focused ultrasound field was generated using a 1.5-MHz custom-made transducer with nominal F#=0.75. A sonication protocol of 734 W acoustic power, 10-ms long BH-pulses, 30 pulses per focal spot, 1 % duty cycle, and 1 mm distance between single foci was tested in an ex vivo human prostate tissue sample containing PCa. The protocol used here has been successfully applied in the previous BH studies for mechanical disintegration of ex vivo prostatic human tissue with benign hyperplasia. BH treatment was monitored using B-mode ultrasound. Post-treatment histologic analysis demonstrated BH produced liquefaction of the targeted tissue volume. BH treated benign prostate parenchyma and PCa had similar tissue fractionation into subcellular fragments. The results of the study demonstrated that PCa tumor tissue can be mechanically ablated using the BH method. Further studies will aim on optimizing protocol parameters to accelerate treatment while maintaining complete destruction of the targeted tissue volume into subcellular debris.

Chronic effects of pulsed high intensity focused ultrasound aided delivery of gemcitabine in a mouse model of pancreatic cancer

Khokhlova, T.D., Y.-N. Wang, H. Son, S. Totten, S. Whang, and J.H. Hwang, "Chronic effects of pulsed high intensity focused ultrasound aided delivery of gemcitabine in a mouse model of pancreatic cancer," Ultrasonics, 132, doi:10.1016/j.ultras.2023.106993, 2023.

More Info

1 Jul 2023

Pulsed high intensity focused ultrasound (pHIFU) is a non-invasive method that allows to permeabilize pancreatic tumors through inertial cavitation and thereby increase the concentration of systemically administered drug. In this study the tolerability of weekly pHIFU-aided administrations of gemcitabine (gem) and their influence on tumor progression and immune microenvironment were investigated in genetically engineered KrasLSL.G12D/ƥ; p53R172H/ƥ; PdxCretg/ƥ (KPC) mouse model of spontaneously occurring pancreatic tumors. KPC mice were enrolled in the study when the tumor size reached 4–6 mm and treated once a week with either ultrasound-guided pHIFU (1.5 MHz transducer, 1 ms pulses, 1% duty cycle, peak negative pressure 16.5 MPa) followed by administration of gem (n = 9), gem only (n = 5) or no treatment (n = 8). Tumor progression was followed by ultrasound imaging until the study endpoint (tumor size reaching 1 cm), whereupon the excised tumors were analyzed by histology, immunohistochemistry (IHC) and gene expression profiling (Nanostring PanCancer Immune Profiling panel). The pHIFU + gem treatments were well tolerated; the pHIFU-treated region of the tumor turned hypoechoic immediately following treatment in all mice, and this effect persisted throughout the observation period (2–5 weeks) and corresponded to areas of cell death, according to histology and IHC. Enhanced labeling by Granzyme-B was observed within and adjacent to the pHIFU treated area, but not in the non-treated tumor tissue; no difference in CD8 + staining was observed between the treatment groups. Gene expression analysis showed that the pHIFU + gem combination treatment lead to significant downregulation of 162 genes related to immunosuppression, tumorigenesis, and chemoresistance vs gem only treatment.

More Publications


Histotripsy Treatment of Hematoma

A rapid, definitive intervention aiming at evacuation of the space-occupying hematoma would reduce pain, improve function, and avoid long term sequelae. Ultrasound is known to promote intravascular clot breakdown, as both a standalone procedure and used in conjunction with thrombolytic drugs and/or microbubbles. In-vitro and in-vivo studies have been conducted over the years, and acoustic cavitation is widely accepted as the dominant mechanism for mechanical disruption of the clot integrity and partial or complete recanalization of the vessel. Recently, a technique termed histotripsy that employs high-intensity focused ultrasound (HIFU) has been demonstrated to dissolve large in vitro and in vivo vascular clots without thrombolytic drugs within 1.5-5 minutes into debris 98% of which were smaller than 5 microns. However, this approach cannot be applied to the large extravascular hematomas due to their large volume (20-50 cc's) compared to intravascular clots, which necessitates much higher thrombolysis rates to complete the treatment within clinically relevant times (.about.15-20 minutes).

Patent Number: 10,702,719

Tatiana Khokhlova, Tom Matula, Wayne Monsky, Yak-Nam Wang


7 Jul 2020

Method and System for MRI-based Targeting, Monitoring, and Quantification of Thermal and Mechanical Bioeffects in Tissue Induced by High Intensity Focused Ultrasound

Example embodiments of system and method for magnetic resonance imaging (MRI) techniques for planning, real-time monitoring, control, and post-treatment assessment of high intensity focused ultrasound (HIFU) mechanical fractionation of biological material are disclosed. An adapted form of HIFU, referred to as "boiling histotripsy" (BH), can be used to cause mechanical fractionation of biological material. In contrast to conventional HIFU, which cause pure thermal ablation, BH can generate therapeutic destruction of biological tissue with a degree of control and precision that allows the process to be accurately measured and monitored in real-time as well as the outcome of the treatment can be evaluated using a variety of MRI techniques. Real-time monitoring also allow for real-time control of BH.

Patent Number: 10,694,974

Vera Khokhlova, Wayne Kreider, Adam Maxwell, Yak-Nam Wang, Mike Bailey


30 Jun 2020

Methods of Soft Tissue Emulsification using a Mechanism of Ultrasonic Atomization Inside Gas or Vapor Cavities and Associated Systems and Devices

Patent Number: 9,498,651

Oleg Sapozhnikov, Mike Bailey, Larry Crum, Vera Khokhlova, Yak-Nam Wang

More Info


22 Nov 2016

The present technology is directed to methods of soft tissue emulsification using a mechanism of ultrasonic atomization inside gas or vapor cavities, and associated systems and devices. In several embodiments, for example, a method of non-invasively treating tissue includes pulsing ultrasound energy from the ultrasound source toward the target site in tissue. The ultrasound source is configured to emit high intensity focused ultrasound (HIFU) waves. The target site comprises a pressure-release interface of a gas or vapor cavity located within the tissue. The method continues by generating shock waves in the tissue to induce a lesion in the tissue at the target site. The method additionally includes characterizing the lesion based on a degree of at least one of a mechanical or thermal ablation of the tissue.

Acoustics Air-Sea Interaction & Remote Sensing Center for Environmental & Information Systems Center for Industrial & Medical Ultrasound Electronic & Photonic Systems Ocean Engineering Ocean Physics Polar Science Center