APL-UW Home

Jobs
About
Campus Map
Contact
Privacy
Intranet

Jinlun Zhang

Senior Principal Oceanographer

Email

zhang@apl.washington.edu

Phone

206-543-5569

Biosketch

Dr. Zhang is interested in understanding how air-ice-ocean interaction in polar oceans affects polar and global climate. He investigates properties of polar air-ice-ocean systems using large- scale sea ice and ocean models. His recent work has focused on examining the evolution of the sea ice cover and the upper ocean in the Arctic in response to a significant climate change recently observed in the northern polar ocean.

He has developed a coupled global ice-ocean model to study the responses of sea ice to different conditions of surface heat fluxes and the effects of sea ice growth/decay on oceanic thermohaline circulation. He is also interested in developing next-generation sea ice models which capture anisotropic nature of ice dynamics. Dr. Zhang joined the Laboratory in 1994

Department Affiliation

Polar Science Center

Education

B.S. Shipbuilding & Ocean Engineering, Harbin Shipbuilding Engineering Institute, China, 1982

M.S. Ship Fluid Dynamics & Ocean Engineering, China Ship Scientific Research Center, 1984

Ph.D. Ice and Ocean Dynamics, Thayer School of Engineering, Dartmouth College, 1993

Projects

Changing Sea Ice and the Bering Sea Ecosystem

Part of the BEST (Bering Sea Ecosystem Study) Project, this study will use high-resolution modeling of Bering Sea circulation to understand past change in the eastern Bering climate and ecosystem and to predict the timing and scope of future change.

 

The Arctic Ocean Model Intercomparison Project (AOMIP): Synthesis and Integration

The AOMIP science goals are to validate and improve Arctic Ocean models in a coordinated fashion and investigate variability of the Arctic Ocean and sea ice at seasonal to decadal time scales, and identify mechanisms responsible for the observed changes. The project's practical goals are to maintain and enhance the established AOMIP international collaboration to reduce uncertainties in model predictions (model validation and improvements via coordinated experiments and studies); support synthesis across the suite of Arctic models; organize scientific meetings and workshops; conduct collaboration with other MIPs with a special focus on model improvements and analysis; disseminate findings of AOMIP effort to broader communities; and train a new generation of ocean and sea-ice modelers.

 

The Impact of Changes in Arctic Sea Ice on the Marine Planktonic Ecosystem- Synthesis and Modeling of Retrospective and Future Conditions

This work will investigate the historical and contemporary changes of arctic sea ice, water column, and aspects of the marine ecosystem as an integrated entity, and project future changes associated with a diminished arctic ice cover under several plausible warming scenarios.

 

More Projects

Publications

2000-present and while at APL-UW

Toward quantifying the increasing accessibility of the Arctic Northwest Passage in the past four decades

Min, C., W. Zhou, H. Luo, Y. Yang, Y. Wang, J. Zhang, and Q. Yang, "Toward quantifying the increasing accessibility of the Arctic Northwest Passage in the past four decades," Adv. Atmos. Sci., doi:10.1007/s00376-022-2040-3, 2023.

More Info

8 Feb 2023

Sea ice, one of the most dominant barriers to Arctic shipping, has decreased dramatically over the past four decades. Arctic maritime transport is hereupon growing in recent years. To produce a long-term assessment of trans-Arctic accessibility, we systematically revisit the daily Arctic navigability with a view to the combined effects of sea ice thickness and concentration throughout the period 1979–2020. The general trends of Navigable Windows (NW) in the Northeast Passage show that the number of navigable days is steadily growing and reached 89±16 days for Open Water (OW) ships and 163±19 days for Polar Class 6 (PC6) ships in the 2010s, despite high interannual and interdecadal variability in the NWs. More consecutive NWs have emerged annually for both OW ships and PC6 ships since 2005 because of the faster sea ice retreat. Since the 1980s, the number of simulated Arctic routes has continuously increased, and optimal navigability exists in these years of record-low sea ice extent (e.g., 2012 and 2020). Summertime navigability in the East Siberian and Laptev Seas, on the other hand, varies dramatically due to changing sea ice conditions. This systematic assessment of Arctic navigability provides a reference for better projecting the future trans-Arctic shipping routes.

Thick and old sea ice in the Beaufort Sea during summer 2020/21 was associated with enhanced transport

Moore, G.W.K., M. Steele, A.J. Schweiger, J.L. Zhang, and K.L. Laidre, "Thick and old sea ice in the Beaufort Sea during summer 2020/21 was associated with enhanced transport," Commun. Earth Environ., 3, doi:10.1038/s43247-022-00530-6, 2022.

More Info

30 Aug 2022

The Arctic Ocean has seen a remarkable reduction in sea ice coverage, thickness and age since the 1980s. These changes are most pronounced in the Beaufort Sea, with a transition around 2007 from a regime dominated by multi-year sea ice to one with large expanses of open water during the summer. Using satellite-based observations of sea ice, an atmospheric reanalysis and a coupled ice-ocean model, we show that during the summers of 2020 and 2021, the Beaufort Sea hosted anomalously large concentrations of thick and old ice. We show that ice advection contributed to these anomalies, with 2020 dominated by eastward transport from the Chukchi Sea, and 2021 dominated by transport from the Last Ice Area to the north of Canada and Greenland. Since 2007, cool season (fall, winter, and spring) ice volume transport into the Beaufort Sea accounts for ~45% of the variability in early summer ice volume — a threefold increase from that associated with conditions prior to 2007. This variability is likely to impact marine infrastructure and ecosystems.

An evaluation of Antarctic sea-ice thickness from the Global Ice-Ocean Modeling and Assimilation System based on in situ and satellite observations

Liao, S., H. Luo, J. Wang, Q. Shi, J. Zhang, and Q. Yang, "An evaluation of Antarctic sea-ice thickness from the Global Ice-Ocean Modeling and Assimilation System based on in situ and satellite observations," Cryosphere, 16, 1807-1819, doi:10.5194/tc-16-1807-2022, 2022.

More Info

11 May 2022

Antarctic sea ice is an important component of the Earth system. However, its role in the Earth system is still unclear due to limited Antarctic sea-ice thickness (SIT) data. A reliable sea-ice reanalysis can be useful to study Antarctic SIT and its role in the Earth system. Among various Antarctic sea-ice reanalysis products, the Global Ice-Ocean Modeling and Assimilation System (GIOMAS) output is widely used in the research of Antarctic sea ice. As more Antarctic SIT observations with quality control are being released, a further evaluation of Antarctic SIT from GIOMAS is conducted in this study based on in situ and satellite observations. Generally, though only sea-ice concentration is assimilated, GIOMAS can basically reproduce the observed variability in sea-ice volume and its changes in the trend before and after 2013, indicating that GIOMAS is a good option to study the long-term variation in Antarctic sea ice. However, due to deficiencies in the model and asymmetric changes in SIT caused by assimilation, GIOMAS underestimates Antarctic SIT especially in deformed ice regions, which has an impact on not only the mean state of SIT but also the variability. Thus, besides the further development of the model, assimilating additional sea-ice observations (e.g., SIT and sea-ice drift) with advanced assimilation methods may be conducive to a more accurate estimation of Antarctic SIT.

More Publications

In The News

Fact check: NASA did not deny warming or say polar ice has increased since 1979

USA Today, Kate Petersen

NASA researchers have documented the loss of trillions of tons of ice from Earth's poles due to human-driven climate change. Citing published reports from the Polar Science Center and other sources, popular social media memes claiming an increase in polar ice since 1979 are swatted down.

21 Jan 2022

Arctic's 'last ice area' may be less resistant to global warming

The New York Times, Henry Fountain

The region, which could provide a last refuge for polar bears and other Arctic wildlife that depends on ice, is not as stable as previously thought, according to a new study.

1 Jul 2021

Arctic's 'last ice area' shows earlier-than-expected melt

Associated Press, Seth Borenstein

Part of the Arctic is nicknamed the 'Last Ice Area,' because floating sea ice there is usually so thick that it’s likely to withstand global warming for decades. So, scientists were shocked last summer when there was suddenly enough open water for a ship to pass through.

1 Jul 2021

More News Items

Acoustics Air-Sea Interaction & Remote Sensing Center for Environmental & Information Systems Center for Industrial & Medical Ultrasound Electronic & Photonic Systems Ocean Engineering Ocean Physics Polar Science Center
Close

 

Close