Campus Map

Matthew Bruce

Principal Scientist/Engineer






B.S. Electrical and Computer Engineering, Michigan Technological University, 1991

M.S. Electrical and Computer Engineering, Virginia Polytechnic University, 1993

Ph.D. Bioengineering, University of Washington, 2004

Matthew Bruce's Website



2000-present and while at APL-UW

Imaging methods for ultrasound contrast agents

Averkiou, M.A., M.F. Bruce, J.E. Powers, P.S. Sheeran, and P.N. Burns, "Imaging methods for ultrasound contrast agents," Ultrasound Med. Biol., 46, 498-517, doi:10.1016/j.ultrasmedbio.2019.11.004, 2020.

More Info

1 Mar 2020

Microbubble contrast agents were introduced more than 25 years ago with the objective of enhancing blood echoes and enabling diagnostic ultrasound to image the microcirculation. Cardiology and oncology waited anxiously for the fulfillment of that objective with one clinical application each: myocardial perfusion, tumor perfusion and angiogenesis imaging. What was necessary though at first was the scientific understanding of microbubble behavior in vivo and the development of imaging technology to deliver the original objective. And indeed, for more than 25 years bubble science and imaging technology have evolved methodically to deliver contrast-enhanced ultrasound. Realization of the basic bubbles properties, non-linear response and ultrasound-induced destruction, has led to a plethora of methods; algorithms and techniques for contrast-enhanced ultrasound (CEUS) and imaging modes such as harmonic imaging, harmonic power Doppler, pulse inversion, amplitude modulation, maximum intensity projection and many others were invented, developed and validated. Today, CEUS is used everywhere in the world with clinical indications both in cardiology and in radiology, and it continues to mature and evolve and has become a basic clinical tool that transforms diagnostic ultrasound into a functional imaging modality. In this review article, we present and explain in detail bubble imaging methods and associated artifacts, perfusion quantification approaches, and implementation considerations and regulatory aspects.

Transcutaneous contrast-enhanced ultrasound imaging of the posttraumatic spinal cord

Khaing, Z.Z., L.N. Cates, J.E. Hyde, R. Hammond, M. Bruce, and C.P. Hofstetter, "Transcutaneous contrast-enhanced ultrasound imaging of the posttraumatic spinal cord," Spinal Cord, EOR, doi:10.1038/s41393-020-0415-9, 2020.

More Info

21 Jan 2020

The current study aims to test whether the blood flow within the contused spinal cord can be assessed in a rodent model via the acoustic window of the laminectomy utilizing transcutaneous ultrasound.

Long-Evans rats (n = 12) were subjected to a traumatic thoracic spinal cord injury (SCI). Three days and 10 weeks after injury, animals underwent imaging of the contused spinal cord using ultrafast contrast-enhanced ultrasound with a Vantage ultrasound research system in combination with a 15 MHz transducer. Lesion size and signal-to-noise ratios were estimated via transcutaneous, subcutaneous, or epidural ultrasound acquisition through the acoustic window created by the original laminectomy.

Following laminectomy, transcutaneous and subcutaneous contrast-enhanced ultrasound imaging allowed for assessment of perfusion and vascular flow in the contused rodent spinal cord. An average loss of 7.2 dB from transcutaneous to subcutaneous and the loss of 5.1 dB from subcutaneous to epidural imaging in signal-to-noise ratio (SNR) was observed. The hypoperfused injury center was measured transcutaneously, subcutaneously and epidurally (5.78 ± 0.86, 5.91 ± 0.53, 5.65 ± 1.07 mm2) at 3 days post injury. The same animals were reimaged again at 10 weeks following SCI, and the area of hypoperfusion had decreased significantly compared with the 3-day measurements detected via transcutaneous, subcutaneous, and epidural imaging respectively (0.69 ± 0.05, 1.09 ± 0.11, 0.95 ± 0.11 mm2, p < 0.001).

Transcutaneous ultrasound allows for measurements and longitudinal monitoring of local hemodynamic changes in a rodent SCI model.

Modeling the acoustic field produced by diagnostic ultrasound arrays in plane and diverging wave modes

Lai, T.-Y., M. Bruce, M.A. Averkiou, "Modeling the acoustic field produced by diagnostic ultrasound arrays in plane and diverging wave modes," IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 66, 1158-1169, doi:10.1109/TUFFC.2019.2908831, 2019.

More Info

1 Jul 2019

Recent advances in ultrafast contrast imaging have facilitated innovations, such as superresolution imaging and ultrafast contrast-enhanced Doppler imaging. Combining plane and diverging wave imaging (PWI/DWI) with tissue harmonic imaging (THI) may offer improvements in image quality in applications such as 3-D THI and harmonic color flow. However, no studies have reported simulations of the nonlinear acoustic fields produced by diagnostic arrays in either plane or diverging wave mode. The aim of this study is to model three typical diagnostic arrays that are used in clinical practice and research, Verasonics L11-4v linear array, C5-2v convex array, and P4-2v phased array with the Khokhlov–Zabolotskaya–Kuznetsov (KZK) equation. We have two specific objectives: first, to investigate whether there is increased bubble destruction due to the nature of the plane and diverging fields in contrast imaging; and second, to investigate the feasibility of combining PWI/DWI and THI by quantifying the second harmonic generated by these fields. We showed in linear simulations that using such arrays for ultrafast contrast imaging produced pressures that are greater in the near field and lower in the far field than those of focused beams and thus may induce more near-field bubble destruction. In nonlinear simulations, the second harmonic produced by ultrafast THI was found to be 2–16 dB lower than that of focused beams for all arrays considered when operated at the same MI. This moderate difference of the second harmonic between PWI/DWI and focused ultrasound suggests that it is feasible to combine PWI/DWI and THI.

More Publications


Improved Detection of Kidney Stones with Ultrasound

Record of Invention Number: 47629

Matthew Bruce


19 Feb 2016

Acoustics Air-Sea Interaction & Remote Sensing Center for Environmental & Information Systems Center for Industrial & Medical Ultrasound Electronic & Photonic Systems Ocean Engineering Ocean Physics Polar Science Center