APL-UW Home

Jobs
About
Campus Map
Contact
Privacy
Intranet

Peter Gaube

Principal Oceanographer

Email

pgaube@apl.washington.edu

Phone

206-616-0611

Education

B.A. Ecology and Evolutionary Biology, University of Arizona, 2003

M.S. Physical Oceanography, Nova Southeastern University, 2007

Ph.D. Oceanography, Oregon State University, 2012

Peter Gaube's Website

http://gaubelab.org

Publications

2000-present and while at APL-UW

Detecting mesopelagic organisms using biogeochemical-Argo floats

Haëntjens, N., A. Della Penna, N. Briggs, L. Karp-Boss, P. Gaube, H. Claustre, and E. Boss, "Detecting mesopelagic organisms using biogeochemical-Argo floats," Geophys. Res. Lett., 47, doi:10.1029/2019GL086088, 2020.

More Info

28 Mar 2020

During the North Atlantic Aerosols and Marine Ecosystems Study in the western North Atlantic, float‐based profiles of fluorescent dissolved organic matter and backscattering exhibited distinct spike layers at ~ 300 m. The locations of the spikes were at depths similar or shallower to where a ship‐based scientific echo sounder identified layers of acoustic backscatter, an Underwater Vision Profiler detected elevated concentration of zooplankton, and mesopelagic fish were sampled by a mesopelagic net tow. The collocation of spike layers in bio‐optical properties with mesopelagic organisms suggests that some can be detected with float‐based bio‐optical sensors. This opens the door to the investigation of such aggregations/layers in observations collected by the global biogeochemical‐Argo array allowing the detection of mesopelagic organisms in remote locations of the open ocean under‐sampled by traditional methods.

Global satellite-observed daily vertical migrations of ocean animals

Behrenfeld, M.J., P. Gaube, A. Della Penna, R.T. O'Malley, W.J. Burt, Y. Hu, P.S. Bontempi, D.K. Steinberg, E.S. Boss, D.A. Siegel, C.A. Hostetler, P.D. Torfell, and S.C. Doney, "Global satellite-observed daily vertical migrations of ocean animals," Nature, 576, 257-261, doi:10.1038/s41586-019-1796-9, 2019.

More Info

27 Nov 2019

Every night across the world's oceans, numerous marine animals arrive at the surface of the ocean to feed on plankton after an upward migration of hundreds of metres. Just before sunrise, this migration is reversed and the animals return to their daytime residence in the dark mesopelagic zone (at a depth of 200–1,000 m). This daily excursion, referred to as diel vertical migration (DVM), is thought of primarily as an adaptation to avoid visual predators in the sunlit surface layer and was first recorded using ship-net hauls nearly 200 years ago. Nowadays, DVMs are routinely recorded by ship-mounted acoustic systems (for example, acoustic Doppler current profilers). These data show that night-time arrival and departure times are highly conserved across ocean regions and that daytime descent depths increase with water clarity, indicating that animals have faster swimming speeds in clearer waters. However, after decades of acoustic measurements, vast ocean areas remain unsampled and places for which data are available typically provide information for only a few months, resulting in an incomplete understanding of DVMs. Addressing this issue is important, because DVMs have a crucial role in global ocean biogeochemistry. Night-time feeding at the surface and daytime metabolism of this food at depth provide an efficient pathway for carbon and nutrient export.

Here we use observations from a satellite-mounted light-detection-and-ranging (lidar) instrument to describe global distributions of an optical signal from DVM animals that arrive in the surface ocean at night. Our findings reveal that these animals generally constitute a greater fraction of total plankton abundance in the clear subtropical gyres, consistent with the idea that the avoidance of visual predators is an important life strategy in these regions. Total DVM biomass, on the other hand, is higher in more productive regions in which the availability of food is increased. Furthermore, the 10-year satellite record reveals significant temporal trends in DVM biomass and correlated variations in DVM biomass and surface productivity. These results provide a detailed view of DVM activities globally and a path for refining the quantification of their biogeochemical importance.

Mesoscale eddies release pelagic sharks from thermal constraints to foraging in the ocean twilight zone

Braun, C.D., P. Gaube, T.H. Sinclair-Taylor, G.B. Skomal, and S.R. Thorrold, "Mesoscale eddies release pelagic sharks from thermal constraints to foraging in the ocean twilight zone," Proc. Nat. Acad. Sci. USA, 116, 17,187-17,192, doi:10.1073/pnas.1903067116, 2019.

More Info

6 Aug 2019

Mesoscale eddies are critical components of the ocean’s "internal weather" system. Mixing and stirring by eddies exerts significant control on biogeochemical fluxes in the open ocean, and eddies may trap distinctive plankton communities that remain coherent for months and can be transported hundreds to thousands of kilometers. Debate regarding how and why predators use fronts and eddies, for example as a migratory cue, enhanced forage opportunities, or preferred thermal habitat, has been ongoing since the 1950s. The influence of eddies on the behavior of large pelagic fishes, however, remains largely unexplored. Here, we reconstruct movements of a pelagic predator, the blue shark (Prionace glauca), in the Gulf Stream region using electronic tags, earth-observing satellites, and data-assimilating ocean forecasting models. Based on >2,000 tracking days and nearly 500,000 high-resolution time series measurements collected by 15 instrumented individuals, we show that blue sharks seek out the interiors of anticyclonic eddies where they dive deep while foraging. Our observations counter the existing paradigm that anticyclonic eddies are unproductive ocean "deserts" and suggest anomalously warm temperatures in these features connect surface-oriented predators to the most abundant fish community on the planet in the mesopelagic. These results also shed light on the ecosystem services provided by mesopelagic prey. Careful consideration will be needed before biomass extraction from the ocean twilight zone to avoid interrupting a key link between planktonic production and top predators. Moreover, robust associations between targeted fish species and oceanographic features increase the prospects for effective dynamic ocean management.

More Publications

In The News

Billfish expedition to the Red Sea

Sport Fishing, Martin Arostegui

This was not a vacation trip but rather a research fishing expedition with the express goal of outfitting swordfish and other large pelagic fish in the Red Sea with satellite tags to study their movement behavior.

4 Feb 2020

South Florida fishermen part of ambitious and revolutionary tagging program for swordfish

Miami Herald, Steve Waters

South Florida fishermen are helping fisheries scientists to better understand swordfish as well as uncharted ocean depths through an ambitious, revolutionary satellite tagging program. The tags will enable University of Washington scientists Peter Gaube and Camrin Braun to learn new information about swordfish, which spend most of their lives in what the researchers call the ocean twilight zone.

27 Dec 2019

Swordfish as oceanographers? Satellite tags allow research of ocean's 'twilight zone' off Florida

UW News, Hannah Hickey

Researchers from the University of Washington are using high-tech tags to record the movements of swordfish – big, deep-water, migratory, open-ocean fish that are poorly studied – and get a window into the ocean depths they inhabit.

4 Nov 2019

More News Items

Inventions

Continuous Underway Multi-sensor Profiler

Record of Invention Number: 48207

Peter Gaube, Kyla Drushka

Disclosure

15 Nov 2017

Acoustics Air-Sea Interaction & Remote Sensing Center for Environmental & Information Systems Center for Industrial & Medical Ultrasound Electronic & Photonic Systems Ocean Engineering Ocean Physics Polar Science Center
Close

 

Close