Campus Map

Jan Newton

Senior Principal Oceanographer

Affiliate Professor, Oceanography






Dr. Jan Newton is a Senior Principal Oceanographer with the Applied Physics Laboratory of the University of Washington and an affiliate professor with the UW School of Oceanography and the School of Marine and Environmental Affairs, both in the UW College of the Environment. She is the Executive Director of the Northwest Association of Networked Ocean Observing Systems (NANOOS), the US IOOS Regional Association for the Pacific Northwest. She is a Co-director of the Washington Ocean Acidification Center and the Co-chair of the Global Ocean Acidification Observing Network.

Jan is a biological oceanographer who has studied the physical, chemical, and biological dynamics of Puget Sound and coastal Washington, including understanding effects from climate and humans on water properties. Currently she has been working with colleagues at UW and NOAA to assess the status of ocean acidification in our local waters.

Department Affiliation

Ocean Physics


B.S. Biology, Western Washington University, 1981

M.S. Oceanography, University of Washington - Seattle, 1984

Ph.D. Oceanography, University of Washington - Seattle, 1989


Washington Real-time Coastal Moorings (NEMO)

The Northwest Enhanced Moored Observatory (NEMO), which consists of a heavily-instrumented real-time surface mooring (Cha Ba), a real-time subsurface profiling mooring (NEMO-Subsurface) and a Seaglider to collect spatial information, aims to improve our understanding of complex physical, chemical and biological processes on the largely unsampled Washington shelf.

27 Sep 2011

NVS: NANOOS Visualization System

The NANOOS Visualization System (NVS) is your tool for easy access to data. NVS gathers data across a wide range of assets such as buoys, shore stations, and coastal land-based stations. Never before available downloads and visualizations are provided in a consistent format. You can access plots and data for almost all in-situ assets for the previous 30-day period.

2 Nov 2009

NANOOS: Northwest Association of Networked Ocean Observing Systems

This Pacific Northwest regional association is a partnership of information producers and users allied to manage coastal ocean observing systems for the benefit of stakeholders and the public. NANOOS is creating customized information and tools for Washington, Oregon, and Northern California.

1 Jan 2004

More Projects


Ocean Acidification: Co-designing data connections to underserved communities for equitable outcomes

A global collaborative team advances momentum around science-based innovative solutions related to global ocean action within the United Nation's sustainable development goals.

More Info

27 Jul 2022

The Global Ocean Acidification Observing Network (GOA-ON) program for Ocean Acidification Research and Sustainability (OARS) raises local voices, especially those of indigenous, small island, and developing states that depend on ocean-based economies for survival. Now over 900 scientists from 100 nations are co-designing activities for adaptation and response strategies on local scales to advance United Nations sustainability goals.
More: www.goa-on.org/oars/overview.php

Backyard Buoys: Equipping Underserved Communities with Ocean Intelligence Platforms

Backyard Buoys is a new community-led project funded by the National Science Foundation's Convergence Accelerator program. This critical initiative empowers Indigenous coastal communities to collect and use ocean data to bolster maritime activities, food security, and coastal hazard protection. Oceanographic buoys deployed in Alaska, the Pacific Islands, and along the Washington coast, will provide accessible and actionable ocean data that bridges to Indigenous knowledge via a web-based application. Post-deployment, a sustainable and Indigenous community-led stewardship program will oversee management of the buoys.

15 Jun 2022

Environmental Sample Processor: A Sentry for Toxic Algal Blooms off the Washington Coast

An undersea robot that measures harmful algal species has been deployed by APL, UW, and NOAA researchers off the Washington coast near La Push. Algal bloom toxicity data are relayed to shore in near-real time and displayed through the NANOOS visualization system. The Environmental Sample Processor, or ESP, is taking measurements near the Juan de Fuca eddy, which is a known incubation site for toxic blooms that often travel toward coastal beaches, threatening fisheries and human health.

22 Jun 2016

More Videos


2000-present and while at APL-UW

Seasonal ocean forecasts to improve predictions of Dungeness crab catch rates, co-developed with state and tribal fishery managers

Norton, E.L., and 11 others including J. Newton, "Seasonal ocean forecasts to improve predictions of Dungeness crab catch rates, co-developed with state and tribal fishery managers," ICES J. Mar. Sci., fsad010, doi:10.1093/icesjms/fsad010, 2023.

More Info

11 Feb 2023

The commercial Dungeness crab (Metacarcinus magister) fishery in Oregon and Washington (USA) is one of the most valuable fisheries in the region, but it experiences high interannual variability. These fluctuations have been attributed to environmental drivers on seasonal and annual timescales. In this study, researchers and state and tribal fisheries managers develop a statistical model for Dungeness crab catch per unit effort (CPUE) to help inform dynamic management decisions in Oregon and Washington. Fishing observations were matched to seasonally forecast and lagged ocean conditions from J-SCOPE, a regional forecast system. Inclusion of dynamic and lagged ocean conditions improved model skill compared to simpler models, and the best model captured intraseasonal trends and interannual variability in catch rates, and spatial catch patterns. We also found that model skill relied on fishing behaviour, which varies interannually, highlighting the need for advanced fishing behaviour modelling to reduce uncertainty. The relationships between catch rates and ocean conditions may help elucidate environmental influences of catch variability. Forecast products were co-designed with managers to meet their needs for key decision points. Our results illustrate a seasonal forecasting approach for management of other highly productive, but also dynamic, invertebrates that increasingly contribute to global fisheries yield.

Unifying biological field observations to detect and compare ocean acidification impacts across marine species and ecosystems: What to monitor and why

Widdicombe, S., K. Isensee, Y. Artioli, J.D. Gaitan-Espitia, C. Hauri, J.A. Newton, M. Wells, and S. Dupont, "Unifying biological field observations to detect and compare ocean acidification impacts across marine species and ecosystems: What to monitor and why," Ocean Sci., 19, 101-119, doi:10.5194/os-19-101-2023, 2023.

More Info

25 Jan 2023

Approximately one-quarter of the CO2 emitted to the atmosphere annually from human activities is absorbed by the ocean, resulting in a reduction of seawater pH and shifts in seawater carbonate chemistry. This multi-decadal process, termed "anthropogenic ocean acidification" (OA), has been shown to have detrimental impacts on marine ecosystems. Recent years have seen a globally coordinated effort to measure the changes in seawater chemistry caused by OA, with best practices now available for these measurements. In contrast to these substantial advances in observing physicochemical changes due to OA, quantifying their biological consequences remains challenging, especially from in situ observations under real-world conditions. Results from 2 decades of controlled laboratory experiments on OA have given insight into the likely processes and mechanisms by which elevated CO2 levels affect biological process, but the manifestation of these process across a plethora of natural situations has yet to be fully explored. This challenge requires us to identify a set of fundamental biological and ecological indicators that are (i) relevant across all marine ecosystems, (ii) have a strongly demonstrated link to OA, and (iii) have implications for ocean health and the provision of ecosystem services with impacts on local marine management strategies and economies. This paper draws on the understanding of biological impacts provided by the wealth of previous experiments, as well as the findings of recent meta-analyses, to propose five broad classes of biological indicators that, when coupled with environmental observations including carbonate chemistry, would allow the rate and severity of biological change in response to OA to be observed and compared. These broad indicators are applicable to different ecological systems, and the methods for data analysis suggested here would allow researchers to combine biological response data across regional and global scales by correlating rates of biological change with the rate of change in carbonate chemistry parameters. Moreover, a method using laboratory observation to design an optimal observing strategy (frequency and duration) and observe meaningful biological rates of change highlights the factors that need to be considered when applying our proposed observation strategy. This innovative observing methodology allows inclusion of a wide diversity of marine ecosystems in regional and global assessments and has the potential to increase the contribution of OA observations from countries with developing OA science capacity.

Advancing best practices for assessing trends of ocean acidification time series

Sutton, A.J., and 13 others including J. Newton, "Advancing best practices for assessing trends of ocean acidification time series," Front. Mar. Sci., 9, doi:10.3389/fmars.2022.1045667, 2022.

More Info

22 Dec 2022

Assessing the status of ocean acidification across ocean and coastal waters requires standardized procedures at all levels of data collection, dissemination, and analysis. Standardized procedures for assuring quality and accessibility of ocean carbonate chemistry data are largely established, but a common set of best practices for ocean acidification trend analysis is needed to enable global time series comparisons, establish accurate records of change, and communicate the current status of ocean acidification within and outside the scientific community. Here we expand upon several published trend analysis techniques and package them into a set of best practices for assessing trends of ocean acidification time series. These best practices are best suited for time series capable of characterizing seasonal variability, typically those with sub-seasonal (ideally monthly or more frequent) data collection. Given ocean carbonate chemistry time series tend to be sparse and discontinuous, additional research is necessary to further advance these best practices to better address uncharacterized variability that can result from data discontinuities. This package of best practices and the associated open-source software for computing and reporting trends is aimed at helping expand the community of practice in ocean acidification trend analysis. A broad community of practice testing these and new techniques across different data sets will result in improvements and expansion of these best practices in the future.

More Publications

In The News

How Dungeness crabs' complex lifecycle will be affected by climate change

UW News, Hannah Hickey

New research on the Pacific Northwest portion of the Dungeness crab fishery, which spans the West Coast of the U.S. and Canada, projects how this crustacean will fare under climate change. Results show that by the end of this century, lower-oxygen water will pose the biggest threat. And while these crabs start as tiny, free-floating larvae, it’s the sharp-clawed adults that will be most vulnerable, specifically to lower-oxygen coastal waters in summer.

28 Oct 2021

Three UW teams awarded NSF Convergence Accelerator grants for misinformation, ocean projects

UW News

Three separate University of Washington research teams have been awarded $750,000 each by the National Science Foundation to advance studies in misinformation and the ocean economy. One team is led by APL-UW's Scott David and another by Jan Newton.

1 Oct 2021

NOAA awards $41 million for ocean observing

NOAA News, Jennie Lyons

The Integrated Ocean Observing System (IOOS) office announces new 5-year agreements with its 11 regional systems including NANOOS, the Northwest Association of Networked Ocean Observing Systems, Jan Newton, Executive Director. The year one award to NANOOS is ~$4M.

14 Sep 2021

More News Items

Acoustics Air-Sea Interaction & Remote Sensing Center for Environmental & Information Systems Center for Industrial & Medical Ultrasound Electronic & Photonic Systems Ocean Engineering Ocean Physics Polar Science Center