Jeff Thiel Research Scientist/Engineer II jthiel@apl.uw.edu |
Education
B.S. Diagnostic Medical Ultrasound, Seattle University, 1992
Publications |
2000-present and while at APL-UW |
![]() |
First series using ultrasonic propulsion and burst wave lithotripsy to treat ureteral stones Hall, M.K., and 22 others including J. Thiel, B. Dunmire, and M.R. Bailey, "First series using ultrasonic propulsion and burst wave lithotripsy to treat ureteral stones," J. Urol., 208, 1075-1082, doi:10.1097/JU.0000000000002864, 2022. |
More Info |
1 Nov 2022 ![]() |
![]() |
|||||
Purpose: |
![]() |
Improving burst wave lithotripsy effectiveness for small stones and fragments by increasing frequency: Theoretical modeling and ex vivo study Bailey, M.R., A.D. Maxwell, S. Cao, S. Ramesh, Z. Liu, J.C. Williams, J. Thiel, B. Dunmire, T. Colonius, E. Kuznetsova, W. Kreider, M.D. Sorensen, J.E. Lindeman, and O.A. Sapozhnikov, "Improving burst wave lithotripsy effectiveness for small stones and fragments by increasing frequency: Theoretical modeling and ex vivo study," J. Endourol., 36, doi:10.1089/end.2021.0714, 2022. |
More Info |
5 Jul 2022 ![]() |
![]() |
|||||
Introduction and Objective: In clinical trial NCT03873259, a 2.6-mm lower pole stone was treated transcutaneously and ex vivo with 390-kHz burst wave lithotripsy (BWL) for 40 minutes and failed to break. The stone was subsequently fragmented with 650-kHz BWL after a 4-minute exposure. This study investigated how to fragment small stones and why varying the BWL frequency may more effectively fragment stones to dust. |
![]() |
Fragmentation of stones by burst wave lithotripsy in the first 19 humans Harper, J.D., J.E. Lingeman, R.M. Sweet, I.S. Metzler, P. Sunaryo, J.C. Williams, A.D. Maxwell, J. Thiel, B.M. Cunitz, B. Dunmire, M.R. Bailey, and M.D. Sorensen, "Fragmentation of stones by burst wave lithotripsy in the first 19 humans," J. Urol., 207, doi:10.1097/JU.0000000000002446, 2022. |
More Info |
1 May 2022 ![]() |
![]() |
|||||
We report stone comminution in the first 19 human subjects by burst wave lithotripsy (BWL), which is the transcutaneous application of focused, cyclic ultrasound pulses. This was a prospective multi-institutional feasibility study recruiting subjects undergoing clinical ureteroscopy (URS) for at least 1 stone ≤12 mm as measured on computerized tomography. During the planned URS, either before or after ureteroscope insertion, BWL was administered with a handheld transducer, and any stone fragmentation and tissue injury were observed. Up to 3 stones per subject were targeted, each for a maximum of 10 minutes. The primary effectiveness outcome was the volume percent comminution of the stone into fragments ≤2 mm. The primary safety outcome was the independent, blinded visual scoring of tissue injury from the URS video. Overall, median stone comminution was 90% (IQR 20, 100) of stone volume with 21 of 23 (91%) stones fragmented. Complete fragmentation (all fragments ≤2 mm) within 10 minutes of BWL occurred in 9 of 23 stones (39%). Of the 6 least comminuted stones, likely causative factors for decreased effectiveness included stones that were larger than the BWL beamwidth, smaller than the BWL wavelength or the introduction of air bubbles from the ureteroscope. Mild reddening of the papilla and hematuria emanating from the papilla were observed ureteroscopically. The first study of BWL in human subjects resulted in a median of 90% comminution of the total stone volume into fragments ≤2 mm within 10 minutes of BWL exposure with only mild tissue injury. |