APL-UW Home

Jobs
About
Campus Map
Contact
Privacy
Intranet

Stephanie Totten

Research Scientist/Engineer III

Email

sitotten@apl.uw.edu

Phone

206-543-7875

Education

A.A. Veterinary Technology, Nebraska College of Technical Agriculture, 2013

B.S. Veterinary Technologist, University of Nebraska - Lincoln, 2014

Publications

2000-present and while at APL-UW

Advancing boiling histotripsy dose in ex vivo and in vivo renal tissues via quantitative histological analysis and shear wave elastography

Ponomarchuk, E., G. Thomas, M. Song, Y.-N. Wang, S. Totten, G. Schade, J. Thiel, M. Bruce, V. Khokhlova, and T. Khokhlova, "Advancing boiling histotripsy dose in ex vivo and in vivo renal tissues via quantitative histological analysis and shear wave elastography," Ultrasound Med. Biol., 50, 1936-1944, doi:10.1016/j.ultrasmedbio.2024.08.022, 2024.

More Info

1 Dec 2024

Objective
In the context of developing boiling histotripsy (BH) as a potential clinical approach for non-invasive mechanical ablation of kidney tumors, the concept of BH dose (BHD) was quantitatively investigated in porcine and canine kidney models in vivo and ex vivo.

Methods
Volumetric lesions were produced in renal tissue using a 1.5-MHz 256-element HIFU-array with various pulsing protocols: pulse duration tp = 1–10 ms, number of pulses per point ppp = 1–15. Two BHD metrics were evaluated: BHD1 = ppp, BHD2 = tp × ppp. Quantitative assessment of lesion completeness was performed by their histological analysis and assignment of damage score to different renal compartments (i.e., cortex, medulla, and sinus). Shear wave elastography (SWE) was used to measure the Young's modulus of renal compartments in vivo vs ex vivo, and before vs after BH treatments.

Results
In vivo tissue required lower BH doses to achieve identical degree of fractionation as compared to ex vivo. Renal cortex (homogeneous, low in collagen) was equal or higher in stiffness than medulla (anisotropic, collagenous), 5.8–12.2 kPa vs 4.7–9.6 kPa, but required lower BH doses to be fully fractionated. Renal sinus (fatty, irregular, with abundant collagenous structures) was significantly softer ex vivo vs in vivo, 4.9–5.1 kPa vs 9.7–15.2 kPa, but was barely damaged in either case with any tested BH protocols. BHD1 was shown to be relevant for planning the treatment of renal cortex (sufficient BHD1 = 5 pulses in vivo and 10 pulses ex vivo), while none of the tested doses resulted in complete fractionation of medulla or sinus. Post-treatment SWE imaging revealed reduction of tissue stiffness ex vivo by 27–58%, increasing with the applied dose, and complete absence of shear waves within in vivo lesions, both indicative of tissue liquefaction.

Conclusion
The results imply that tissue resistance to mechanical fractionation, and hence required BH dose, are not solely determined by tissue stiffness but also depend on its composition and structural arrangement, as well as presence of perfusion. The SWE-derived reduction of tissue stiffness with increasing BH doses correlated with tissue damage score, indicating potential of SWE for post-treatment confirmation of BH lesion completeness.

Dynamic mode decomposition based Doppler monitoring of de novo cavitation induced by pulsed HIFU: An in vivo feasibility study

Song, M., O.A. Sapozhnikov, V.A. Khokhlova, H. Son, S. Totten, Y.-N. Wang, and T.D. Khokhlova, "Dynamic mode decomposition based Doppler monitoring of de novo cavitation induced by pulsed HIFU: An in vivo feasibility study," Sci. Rep., 14, doi:10.1038/s41598-024-73787-w, 2024.

More Info

27 Sep 2024

Pulsed high-intensity focused ultrasound (pHIFU) has the capability to induce de novo cavitation bubbles, offering potential applications for enhancing drug delivery and modulating tissue microenvironments. However, imaging and monitoring these cavitation bubbles during the treatment presents a challenge due to their transient nature immediately following pHIFU pulses. A planewave bubble Doppler technique demonstrated its potential, yet this Doppler technique used conventional clutter filter that was originally designed for blood flow imaging. Our recent study introduced a new approach employing dynamic mode decomposition (DMD) to address this in an ex vivo setting. This study demonstrates the feasibility of the application of DMD for in vivo Doppler monitoring of the cavitation bubbles in porcine liver and identifies the candidate monitoring metrics for pHIFU treatment. We propose a fully automated bubble mode identification method using k-means clustering and an image contrast-based algorithm, leading to the generation of DMD-filtered bubble images and corresponding Doppler power maps after each HIFU pulse. These power Doppler maps are then correlated with the extent of tissue damage determined by histological analysis. The results indicate that DMD-enhanced power Doppler map can effectively visualize the bubble distribution with high contrast, and the Doppler power level correlates with the severity of tissue damage by cavitation. Further, the temporal characteristics of the bubble modes, specifically the decay rates derived from DMD, provide information of the bubble dissolution rate, which are correlated with tissue damage level—slower rates imply more severe tissue damage.

Comparative study of histotripsy pulse parameters used to inactivate Escherichia coli in suspension

Ambedkar, P.A., Y.-N. Wang, T. Khokhlova, M. Bruce, D.F. Leotta, S. Totten, A.D. Maxwell, K.T. Chan, W.C. Liles, E.P. Dellinger, W. Monsky, A.A. Adedipe, and T.J. Matula, "Comparative study of histotripsy pulse parameters used to inactivate Escherichia coli in suspension," Ultrasound Med. Biol., 49, 2451-2458, doi:10.1016/j.ultrasmedbio.2023.08.004, 2023.

More Info

1 Dec 2023

Bacterial loads can be effectively reduced using cavitation-mediated focused ultrasound, or histotripsy. In this study, gram-negative bacteria (Escherichia coli) in suspension were used as model bacteria to evaluate the effectiveness of two regimens of histotripsy treatments: cavitation histotripsy (CH) and boiling histotripsy (BH).

The results of this study suggest that both CH and BH can be used to inactivate E. coli in suspension, with the optimal regimen depending on the attainable peak negative focal pressure at the target.

More Publications

Acoustics Air-Sea Interaction & Remote Sensing Center for Environmental & Information Systems Center for Industrial & Medical Ultrasound Electronic & Photonic Systems Ocean Engineering Ocean Physics Polar Science Center
Close

 

Close