APL-UW Home

Jobs
About
Campus Map
Contact
Privacy
Intranet

Oleg Sapozhnikov

Senior Principal Engineer

Email

olegs@apl.washington.edu

Phone

206-543-1385

Education

M.S. Physics, Moscow State University, 1985

Ph.D. Acoustics, Moscow State University, 1988

Videos

Ultrasonic tweezers: Technology to lift and steer solid objects in a living body

In a recent paper, a CIMU team describes successful experiments to manipulate a solid object within a living body with ultrasound beams transmitted through the skin.

More Info

15 Jul 2020

A collaborative, international research teams developed and tuned an ultrasound transducer to create vortex shaped beams that can trap, grab, levitate, and move in three dimensions mm-scale objects. The team is working to apply this technology to their all-in-one kidney stone treatment system that, in clinical trials, uses ultrasound to non-invasively break, erode, and move stones and stone fragments out of the kidney so that they may pass naturally from the body.

Mechanical Tissue Ablation with Focused Ultrasound

An experimental noninvasive surgery method uses nonlinear ultrasound pulses to liquefy tissue at remote target sites within a small focal region without damaging intervening tissues. A multi-institution, international team led by CIMU researchers is applying the method to the focal treatment of prostate tumors.

More Info

19 Mar 2020

Boiling histotripsy utilizes sequences of millisecond-duration HIFU pulses with high-amplitude shocks that form at the focus by nonlinear propagation effects. Due to strong attenuation of the ultrasound energy at the shocks, these nonlinear waves rapidly heat tissue and generate millimeter-sized boiling bubbles at the focus within each pulse. Then the further interaction of subsequent shocks with the vapor cavity causes tissue disintegration into subcellular debris through the acoustic atomization mechanism.

The method was proposed at APL-UW in collaboration with Moscow State University (Russia) and now is being evaluated for various clinical applications. It has particular promise because of its important clinical advantages: the treatment of tissue volumes can be accelerated while sparing adjacent structures and not injuring intervening tissues; it generates precisely controlled mechanical lesions with sharp margins; the method can be implemented in existing clinical systems; and it can be used with real-time ultrasound imaging for targeting, guidance, and evaluation of outcomes. In addition, compared to thermal ablation, BH may lead to faster resorption of the liquefied lesion contents.

Characterizing Medical Ultrasound Sources and Fields

For every medical ultrasound transducer it's important to characterize the field it creates, whether for safety of imaging or efficacy of therapy. CIMU researchers measure a 2D acoustic pressure distribution in the beam emanating from the source transducer and then reconstruct mathematically the exact field on the surface of the transducer and in the entire 3D space.

11 Sep 2017

More Videos

Publications

2000-present and while at APL-UW

Quantitative assessment of boiling histotripsy progression based on color Doppler measurements

Song, M.H., G.P.L. Thomas, V.A. Khokhlova, O.A. Sapozhnikov, M.R. Bailey, A.D. Maxwell, P.V. Yuldashev, and T.D. Khokhlova, "Quantitative assessment of boiling histotripsy progression based on color Doppler measurements," IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 69, 3255-3269, doi:10.1109/TUFFC.2022.3212266, 2022.

More Info

1 Dec 2022

Boiling histotripsy (BH) is a mechanical tissue liquefaction method that uses sequences of millisecond-long high intensity focused ultrasound (HIFU) pulses with shock fronts. The BH treatment generates bubbles that move within the sonicated volume due to acoustic radiation force. Since the velocity of the bubbles and tissue debris is expected to depend on the lesion size and liquefaction completeness, it could provide a quantitative metric of the treatment progression. In this study, the motion of bubble remnants and tissue debris immediately following BH pulses was investigated using high-pulse repetition frequency (PRF) plane-wave color Doppler ultrasound in ex vivo myocardium tissue. A 256-element 1.5 MHz spiral HIFU array with a coaxially integrated ultrasound imaging probe (ATL P4-2) produced 10 ms BH pulses to form volumetric lesions with electronic beam steering. Prior to performing volumetric BH treatments, the motion of intact myocardium tissue and anticoagulated bovine blood following isolated BH pulses was assessed as two limiting cases. In the liquid blood the velocity of BH-induced streaming at the focus reached over 200 cm/s, whereas the intact tissue was observed to move toward the HIFU array consistent with elastic rebound of tissue. Over the course of volumetric BH treatments tissue motion at the focus locations was dependent on the axial size of the forming lesion relative to the corresponding size of the HIFU focal area. For axially small lesions, the maximum velocity after the BH pulse was directed toward the HIFU transducer and monotonically increased over time from about 20–100 cm/s as liquefaction progressed, then saturated when tissue was fully liquefied. For larger lesions obtained by merging multiple smaller lesions in the axial direction, the high-speed streaming away from the HIFU transducer was observed at the point of full liquefaction. Based on these observations, the maximum directional velocity and its location along the HIFU propagation axis were proposed and evaluated as candidate metrics of BH treatment completeness.

In vivo aberration correction for transcutaneous HIFU therapy using a multielement array

Thomas, G.P.L., T.D. Khokhlova, O.A. Sapozhnikov, Y.-N. Wang, S.I. Totten, and V.A. Khokhlova, "In vivo aberration correction for transcutaneous HIFU therapy using a multielement array," IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 69, 2955-2965, doi:10.1109/TUFFC.2022.3200309, 2022.

More Info

1 Oct 2022

One of the challenges of transcutaneous high-intensity focused ultrasound (HIFU) therapies, especially ones relying heavily on shock formation, such as boiling histotripsy (BH), is the loss of focusing from aberration induced by the heterogeneities of the body wall. Here, a methodology to execute aberration correction in vivo is proposed. A custom BH system consisting of a 1.5-MHz phased array of 256 elements connected to a Verasonics V1 system is used in pulse/echo mode on a porcine model under general anesthesia. Estimation of the time shifts needed to correct for aberration in the liver and kidney is done by maximizing the value of the coherence factor on the acquired backscattered signals. As this process requires multiple pulse/echo sequences on a moving target to converge to a solution, tracking is also implemented to ensure that the same target is used between each iteration. The method was validated by comparing the acoustic power needed to generate a boiling bubble at one target with aberration correction and at another target within a 5-mm radius without aberration correction. Results show that the aberration correction effectively lowers the acoustic power required to reach boiling by up to 45%, confirming that it indeed restored formation of the nonlinear shock front at the focus.

Improving burst wave lithotripsy effectiveness for small stones and fragments by increasing frequency: Theoretical modeling and ex vivo study

Bailey, M.R., A.D. Maxwell, S. Cao, S. Ramesh, Z. Liu, J.C. Williams, J. Thiel, B. Dunmire, T. Colonius, E. Kuznetsova, W. Kreider, M.D. Sorensen, J.E. Lindeman, and O.A. Sapozhnikov, "Improving burst wave lithotripsy effectiveness for small stones and fragments by increasing frequency: Theoretical modeling and ex vivo study," J. Endourol., 36, doi:10.1089/end.2021.0714, 2022.

More Info

5 Jul 2022

Introduction and Objective: In clinical trial NCT03873259, a 2.6-mm lower pole stone was treated transcutaneously and ex vivo with 390-kHz burst wave lithotripsy (BWL) for 40 minutes and failed to break. The stone was subsequently fragmented with 650-kHz BWL after a 4-minute exposure. This study investigated how to fragment small stones and why varying the BWL frequency may more effectively fragment stones to dust.

Methods: A linear elastic theoretical model was used to calculate the stress created inside stones from shock wave lithotripsy (SWL) and different BWL frequencies mimicking the stone's size, shape, lamellar structure, and composition. To test model predictions about the impact of BWL frequency, matched pairs of stones (1–5 mm) were treated at (1) 390 kHz, (2) 830 kHz, and (3) 390 kHz followed by 830 kHz. The mass of fragments > 1 and 2 mm was measured over 10 minutes of exposure.

Results: The linear elastic model predicts that the maximum principal stress inside a stone increases to more than 5.5 times the pressure applied by the ultrasound wave as frequency is increased, regardless of the composition tested. The threshold frequency for stress amplification is proportionate to the wave speed divided by the stone diameter. Thus, smaller stones may be likely to fragment at a higher frequency, but not at a lower frequency below a limit. Unlike with SWL, this amplification in BWL occurs consistently with spherical and irregularly shaped stones. In water tank experiments, stones smaller than the threshold size broke fastest at high frequency (p = 0.0003), whereas larger stones broke equally well to submillimeter dust at high, low, or mixed frequencies.

Conclusions: For small stones and fragments, increasing frequency of BWL may produce amplified stress in the stone causing the stone to break. Using the strategies outlined here, stones of all sizes may be turned to dust efficiently with BWL.

More Publications

Inventions

Noninvasive Fragmentation of Urinary Tract Stones with Focused Ultrasound

Patent Number: 11,583,299

Adam Maxwell, Bryan Cunitz, Wayne Kreider, Oleg Sapozhnikov, Mike Bailey

Patent

21 Feb 2023

Confinement or Movement of an Object Using Focused Ultrasound Waves to Generate an Ultrasound Intensity Well

Patent Number: 11,580,945

Adam Maxwell, Oleg Sapozhnikov, Wayne Kreider, Mike Bailey

Patent

14 Feb 2023

Methods for Separating, Concentrating, and/or Differentiating Between Cells from a Cell Sample

Patent Number: 10,794,827

Tom Matula, Oleg Sapozhnikov, Brian MacConaghy

More Info

Patent

6 Oct 2020

Embodiments are generally related to differentiating and/or separating portions of a sample that are of interest from the remainder of the sample. Embodiments may be directed towards separating cells of interest from a cell sample. In some embodiments, acoustic impedances of the cells of interest may be modified. For example, the acoustic properties of the cells of interest may be modified by attaching bubbles to the cells of interest. The cell sample may then be subjected to an acoustic wave. The cells of interest may be differentiated and/or separated from the remainder of the sample based on relative displacements and/or volumetric changes experienced by the cells of interest in response thereto. The cells of interest may be separated using a standing wave and sorted into separate channels of a flow cell. Optionally, the cells may be interrogated by a light source and differentiated by signals generated in response thereto.

More Inventions

Acoustics Air-Sea Interaction & Remote Sensing Center for Environmental & Information Systems Center for Industrial & Medical Ultrasound Electronic & Photonic Systems Ocean Engineering Ocean Physics Polar Science Center
Close

 

Close